Skip to main content

A Comparison of Life Cycle Assessment Studies of Different Biofuels

Part of the Green Energy and Technology book series (GREEN)

Abstract

The intensive increase of biofuel demand has pushed the researchers to find a sustainable biofuel production system. LCA is the most accepted tool to assess the sustainability of biofuel production systems. The functional unit, scope, system boundary, reference system, data source, and allocation are the most important steps of an LCA study. Variations in these steps between studies affect the results significantly. Previous studies have shown that different biofuel feedstocks have different environmental burden hot spots, which refer to elevated greenhouse gas (GHG) emissions associated with a specific life cycle stage or facility process. The present chapter is an effort to compare various LCA studies on different biofuels. The well-to-wheel (cradle-to-grave) system is recommended for the assessment of biofuels production system. An LCA study of biofuels can demonstrate their sustainability and can guide the policy makers in adopting the policies for their promotions.

Keywords

  • Life Cycle Assessment
  • Impact Category
  • Life Cycle Inventory
  • System Boundary
  • Life Cycle Impact Assessment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-5364-1_12
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-5364-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Addiscott TM (2005) Nitrate, agriculture and the environment. CABI Publishing, Oxfordshire, UK, pp 66–67

    Google Scholar 

  • Adler PR, Grosso SJD, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691

    CrossRef  Google Scholar 

  • Arvidsson R, Persson S, Froling M, Svanstromb M (2011) Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J Cleaner Prod 19:129–137

    CrossRef  Google Scholar 

  • Askham C (2012) REACH and LCA—methodological approaches and challenges. Int J Life Cycle Assess 17:43–57

    CrossRef  Google Scholar 

  • Ayres RU (1995) Life cycle analysis: a critique. Resour Conserv Recycl 14:199–223

    CrossRef  Google Scholar 

  • Azapagic A, Clift R (1999) Allocation of environmental burdens in co-product systems: product-related burdens. Int J Life Cycle Assess 4(6):357–369

    CrossRef  Google Scholar 

  • Björklund AE (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7:64–72

    CrossRef  Google Scholar 

  • Chandrashekar LA, Mahesh NS, Gowda B, Hall W (2012) Life cycle assessment of biodiesel production from pongamia oil in rural Karnataka. Agric Eng Int: CIGR J 14(3):67–77

    Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    CrossRef  Google Scholar 

  • Chiaramonti D, Recchia L (2010) Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? The impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenerg 34:787–797

    CrossRef  Google Scholar 

  • IPCC, Climate Change (2007) Mitigation of climate change. Working group III contribution to the Intergovernmental panel on climate change fourth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • CONCAWE: CONservation of clean air and water in Europe (Oil companies’ European association for environment, health and safety in refining and distribution) (2004) Joint Research Centre of the EU Commission, and European Council for Automotive R&D. Well-to-wheels analysis of future automotive fuels and powertrains in the European context, version 1b, Jan 2004. http://ies.jrc.cec.eu.int/Download/eh

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    CrossRef  Google Scholar 

  • Curran MA (ed) (1996) Environmental life cycle assessment. ISBN 0-07-015063-X, McGraw-Hill

    Google Scholar 

  • Curran MA (2007) Co-product and input allocation. Approaches for creating life cycle inventory data. A literature review. Int J Life Cycle Assess 12(1):65–78

    Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146

    CrossRef  Google Scholar 

  • Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced from potato steam peels. Int J Hydrogen Energy 33:3067–3072

    CrossRef  Google Scholar 

  • Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17:1104–1115

    CrossRef  Google Scholar 

  • Dubreuil A, Gaillard G, Müller-Wenk R (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15

    CrossRef  Google Scholar 

  • EC (2008) Commission of the European communities. Proposal for a directive of the European parliament and of the council on the promotion of the use of renewable sources. COM 19 final, 2008/0016 (COD)

    Google Scholar 

  • Ehrenfeld J (1997) The importance of LCAs—warts and all. J Ind Ecol 1:41–49

    CrossRef  Google Scholar 

  • Emmenegger MF, Pfister S, Koehler A, Giovanetti LDe, Arena AP, Zah R (2011) Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int J Life Cycle Assess 16:869–877

    CrossRef  Google Scholar 

  • Emmenegger MF, Stucki M, Hermle S (2012) LCA of energetic biomass utilization: actual projects and new developments—23 April 2012, Berne, Switzerland. Int J Life Cycle Assess 17:1142–1147

    CrossRef  Google Scholar 

  • European Commission (2010a) IUCLID dataset substance ID/CAS no.:71-43-2, Benzene. http://ecb.jrc.ec.europa.eu/iuclid-datasheet/71432.pdf. Accessed 11 July 2011

  • European Commission (2010b) International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance. EUR 24708 EN. European commission, joint research centre, institute for environment and sustainability, 1st edn. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • Farrell AE, Pelvin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    CrossRef  Google Scholar 

  • Fergusson M (2003) Expert paper on the global impacts of road transport biofuels: a contribution to the government’s analysis, national society for clean air (NSCA), cleaner transport forum, and the Institute for European Environmental Policy, p 25

    Google Scholar 

  • Fernandes SD, Trautmann NM, Streets DG, Roden CA, Bond TC (2007) Global biofuel use, 1850–2000. Global biogeochem cycles 21, GB2019 DOI:10.1029/2006GB002836

  • Finco A, Bentivoglio D, Rasetti M, Padella M, Cortesi D, Polla P (2012) Sustainability of rapeseed biodiesel using life cycle assessment. Presentation at the international association of agricultural economists (IAAE) triennial conference, Foz do Iguaçu, Brazil, 18–24 Aug 2012

    Google Scholar 

  • Finnveden G (2000) On the limitations of life cycle assessment and environmental systems analysis tools in general. Int J Life Cycle Assess 5:229–238

    CrossRef  Google Scholar 

  • Frischknecht R (2000) Allocation in life cycle inventory analysis for joint production. Int J Life Cycle Assess 5(2):85–95

    CrossRef  Google Scholar 

  • Fukushima Y, Chen SP (2009) A decision support tool for modifications in crop cultivation method based on life cycle assessment: a case study on greenhouse gas emission reduction in Taiwanese sugarcane cultivation. Int J Life Cycle Assess 14:639–655

    CrossRef  Google Scholar 

  • Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100(21):4919–4930

    CrossRef  Google Scholar 

  • Graedel TE (1998) Streamlined life-cycle assessment. Prentice Hall, Upper Saddle River, p 310

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic, Dordrecht

    Google Scholar 

  • Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative life cycle assessment of two biofuels. Ethanol from sugar beet and rapeseed methyl ester. Int J Life Cycle Assess 13(3):184–190

    Google Scholar 

  • Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1990–present. Environ Sci Technol 40:1744–1750

    CrossRef  Google Scholar 

  • Hischier R, Reichart I (2003) Multifunctional electronic media-traditional media: the problem of an adequate functional unit. Int J Life Cycle Assess 8:201–208

    CrossRef  Google Scholar 

  • Huo H, Wang M, Bloyd C, Putsche V (2009) Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ Sci Technol 43:750–756

    CrossRef  Google Scholar 

  • IEA (International Energy Agency) (2008) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris

    CrossRef  Google Scholar 

  • IFEU (2000) Bioenergy for Europe: which ones fit best?–a comparative analysis for the community. Institute for Energy and Environmental Research, Heidelberg

    Google Scholar 

  • ISO 14040 (2006) ISO Norm 14040:2006. Life cycle assessment: principles and framework. Environmental management. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 14044 (2006) Environmental management—life cycle assessment—requirements and guidelines

    Google Scholar 

  • ISO (1998) ISO 14041: environmental management—life cycle assessment—goal and scope definition and inventory analysis. ISO 14041:1998(E). International Standards Organization

    Google Scholar 

  • Jensen AA, Hoffman L, Møller BT, Schmidt A, Christiansen K, Elkington J, van Dijk F (1997) Life-cycle assessment (LCA)—a guide to approaches, experiences and information sources. Environmental issues series no. 6. European Environment Agency, Copenhagen

    Google Scholar 

  • Jolliet O, Mueller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington DW, Potting J, Rebitzer G, Stewart M, Udo de Haes HA, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9:394–404

    CrossRef  Google Scholar 

  • Kaltschmitt M, Reingardt GA, Stelzer T (1997) Life cycle analysis of biofuels under different environmental aspects. Biomass Bioenergy 12(2):121–134

    CrossRef  Google Scholar 

  • Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenerg 29:426–439

    CrossRef  Google Scholar 

  • Kim S, Dale BE (2006) Ethanol fuels: E10 or E85—life cycle perspectives. Int J Life Cycle Assess 11:117–121

    CrossRef  Google Scholar 

  • Kim S, Dale BE (2009) Regional variations in greenhouse gas emissions of biobased products in the United States—corn based ethanol and soybean oil. Int J Life Cycle Assess 14:540–546

    CrossRef  Google Scholar 

  • Koellner T, Scholz R (2008) Assessment of land use impacts on the natural environment. Int J Life Cycle Assess 13:32–48

    Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Bioref 4:310–325

    CrossRef  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    CrossRef  Google Scholar 

  • Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sus Dev 10(2):109–126

    CrossRef  Google Scholar 

  • Larson ED, Williams RH, Jin H (2006) Fuels and electricity from biomass with CO2 capture and storage, prepared for 8th international conference on greenhouse gas control technologies, Trondheim, Norway, June 2006

    Google Scholar 

  • Lee JJ, O’Callaghan P, Allen D (1995) Critical review of life cycle analysis and assessment techniques and their application to commercial activities. Resour Conserv Recycl 13:37–56

    CrossRef  Google Scholar 

  • Lent T (2003) Toxic data bias and the challenges of using LCA in the design community, presented at GreenBuild 2003, Pittsburg, PA

    Google Scholar 

  • Liska AJ, Cassman KG (2008) Towards standardization of life-cycle metrics for biofuels: greenhouse gas emissions mitigation and net energy yield. J Biobased Materials Bioenerg 2:187–203

    CrossRef  Google Scholar 

  • Luo L, van der Voet E, Huppes G, Udo de Haes HA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14:529–539

    CrossRef  Google Scholar 

  • Luo D, Hu Z, Choi DG, Thomas VM, Realff MJ, Chance RR (2010) Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Environ Sci Technol 44:8670–8677

    CrossRef  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31:3362–3380

    CrossRef  Google Scholar 

  • Maltitz G, von Haywood L, Mapako M, Brent A (2009) Analysis of opportunities for biofuel production in sub-Saharan Africa. CIFOR

    Google Scholar 

  • Markevicius A, Katinas V, Perednis E, Tamasauskiene M (2010) Trends and sustainability criteria of the production and use of liquid biofuels. Renew Sustain Energy Rev 14:3226–3231

    CrossRef  Google Scholar 

  • McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U, Barrett A, Bomberg M, Fingerman K, Scown C, Strogen B, Horvath A (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45:1751–1756

    CrossRef  Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity. Int J Life Cycle Assess 13:22–31

    Google Scholar 

  • Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84

    CrossRef  Google Scholar 

  • Muys B, García Quijano J (2002) A new method for land use impact assessment in LCA based on ecosystem exergy concept. Internal report. Laboratory for forest, and landscape research, Leuven, Belgium. http://www.biw.kuleuven.be/lbh/lbnl/forecoman/pdf/land%20use%20method4.pdf. Accessed 9 Jan 2012

  • Ndong R, Montrejaud-Vignoles M, Girons OS, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. Glob Change Biol Bioenergy 1(3):197–210. ISSN 1757-1707

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37:52–68

    CrossRef  Google Scholar 

  • Owens JW (1997) Life-cycle assessment in relation to risk assessment: an evolving perspective. Risk Anal 17:359–365

    CrossRef  Google Scholar 

  • Pettersson K, Harvey S (2010) CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels. Energy 35:1101–1106

    CrossRef  Google Scholar 

  • Power N, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis: biomethane or ethanol? Biomass Bioenergy 33:1403–1412

    CrossRef  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008a) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300

    CrossRef  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008b) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    CrossRef  Google Scholar 

  • SAIC (2006) Life cycle assessment: principles and practice. Scientific applications international corporation (SAIC), report no. EPA/600/R-06/060. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio

    Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    CrossRef  Google Scholar 

  • Scholz R (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12:16–23

    CrossRef  Google Scholar 

  • Shapouri H, Duffield J, Wang M (2002) The energy balance of corn ethanol: an update. Agricultural economic report no. 813. US Department of Agriculture

    Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, Nelson R (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7:117–146

    CrossRef  Google Scholar 

  • Singh A, Olsen SI (2011) Critical analysis of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    CrossRef  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioreso Tech 1001:5003–5012

    CrossRef  Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third generation biofuel. J Chem Tech Biotech 86(11):1349–1353

    CrossRef  Google Scholar 

  • Spatari S, Zhang Y, MacLean HL (2005) Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ Sci Technol 39(24):9750–9758

    CrossRef  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel pro-duction in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077

    CrossRef  Google Scholar 

  • Stichnothe H, Azapagic A (2009) Bioethanol from waste: life cycle estimation of the greenhouse gas saving potential. Resour Conserv Recycl 53(11):624–630

    CrossRef  Google Scholar 

  • Stucki M, Jungbluth N, Leuenberger M (2012) Life cycle assessment of biogas production from different substrates—Schlussbericht. Auftragnehmer: ESU-Services Ltd., Publikation 290514. Bundesamt für Energie BFE, Berne, Switzerland, Accessed from Int J Life Cycle Assess 17:1142–1147

    Google Scholar 

  • Tokunaga K, Bernstein P, Coleman C, Konan D, Makini E, NASSERI I (2012) Life cycle analysis of biofuels implementation in Hawai‘i. The economic research organization. University of Hawaii at Manoa, Hawaii

    Google Scholar 

  • Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer E, Mueller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (eds) (2002) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • UNEP (2003) Evaluation of environmental impacts in life cycle assessment, United Nations environment programme, division of technology, industry and economics (DTIE), production and consumption unit, Paris

    Google Scholar 

  • UNEP/GRID-Arendal (2011) http://www.unep.org/climatechange/mitigation/Portals/93/documents/Bioenergy/VBG_Ebook.pdf. ecsase on 30 Dec 2012

  • Vigon BW, Jensen AA (1995) Life cycle assessment: data quality and databases practitioner survey. J Clean Prod 3:135–141

    CrossRef  Google Scholar 

  • Wang M (2005) Energy and greenhouse emission impacts of fuel ethanol, presentation at the DOE/EC biorefinery workshop, Washington, DC, 21 July

    Google Scholar 

  • Wang M, Lee H, Molburg J (2004) Allocation of energy use in petroleum refineries to petroleum products. Int J Life Cycle Assess 9(1):34–44

    CrossRef  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) (1996) Climate change 1995: impacts, adaptations and mitigation of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • WHO (World Health Organization), International Program on Chemical Safety (IPCS) (2006) Guidance document on characterizing and communicating uncertainty of exposure assessment. World Health Organization, Geneva, Switzerland, Nov 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rathore, D., Pant, D., Singh, A. (2013). A Comparison of Life Cycle Assessment Studies of Different Biofuels. In: Singh, A., Pant, D., Olsen, S. (eds) Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5364-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5364-1_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5363-4

  • Online ISBN: 978-1-4471-5364-1

  • eBook Packages: EnergyEnergy (R0)