Flexible Marine Riser with Vessel Dynamics

  • Wei He
  • Shuzhi Sam Ge
  • Bernard Voon Ee How
  • Yoo Sang Choo
Part of the Advances in Industrial Control book series (AIC)


Chapter 8 studies the modeling and control of a flexible marine riser with the vessel dynamics. Both the dynamics of the vessel and the vibration of the riser are considered in the dynamic analysis, which make the system more difficult to control. Boundary control is proposed at the top boundary of the riser to suppress the riser’s vibration. Adaptive control is designed when the system parametric uncertainties exist. Employing the Lyapunov direct method, the states of the system are proven to be uniformly ultimately bounded. The state of the system will converge to a small neighborhood of zero by appropriately choosing the design parameters. The design is based on the PDEs of the system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches.


Adaptive Control Boundary Control Lyapunov Direct Method Riser System Flexible Riser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Kaewunruen S, Chiravatchradj J, Chucheepsakul S (2005) Nonlinear free vibrations of marine risers/pipes transport fluid. Ocean Eng 32(3–4):417–440 CrossRefGoogle Scholar
  2. 4.
    How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vib 320:758–776 CrossRefGoogle Scholar
  3. 8.
    How BVE, Ge SS, Choo YS (2011) Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans Control Syst Technol 19(1):208–220 CrossRefGoogle Scholar
  4. 48.
    Do K, Pan J (2008) Boundary control of transverse motion of marine risers with actuator dynamics. J Sound Vib 318(4–5):768–791 CrossRefGoogle Scholar
  5. 49.
    Ge SS, He W, How BVE, Choo YS (2010) Boundary control of a coupled nonlinear flexible marine riser. IEEE Trans Control Syst Technol 18(5):1080–1091 CrossRefGoogle Scholar
  6. 53.
    Balas MJ (1978) Feedback control of flexible systems. IEEE Trans Autom Control 23:673–679 CrossRefzbMATHGoogle Scholar
  7. 54.
    Vandegrift MW, Lewis FL, Zhu SQ (1994) Flexible-link robot arm control by a feedback linearization/singular perturbation approach. J Robot Syst 11(7):591–603 CrossRefzbMATHGoogle Scholar
  8. 57.
    Armaou A, Christofides P (2000) Wave suppression by nonlinear finite-dimensional control. Chem Eng Sci 55(14):2627–2640 CrossRefGoogle Scholar
  9. 58.
    Christofides P, Armaou A (2000) Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control. Syst Control Lett 39(4):283–294 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 59.
    Sakawa Y, Matsuno F, Fukushima S (1985) Modeling and feedback control of a flexible arm. J Robot Syst 2(4):453–472 CrossRefGoogle Scholar
  11. 60.
    Ge SS, Lee TH, Zhu G (1997) A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model. J Robot Syst 14(3):165–178 CrossRefzbMATHGoogle Scholar
  12. 67.
    Ge SS, Lee TH, Zhu G (1998) Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans Robot Autom 14(1):179–185 CrossRefGoogle Scholar
  13. 68.
    Balas MJ (1978) Active control of flexible systems. J Optim Theory Appl 25:415–436 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 69.
    Meirovitch L, Baruh H (1983) On the problem of observation spillover in self-adjoint distributed systems. J Optim Theory Appl 30(2):269–291 MathSciNetCrossRefGoogle Scholar
  15. 70.
    Ge SS, Lee TH, Zhu G, Hong F (2001) Variable structure control of a distributed parameter flexible beam. J Robot Syst 18:17–27 CrossRefzbMATHGoogle Scholar
  16. 71.
    Zhu G, Ge SS (1998) A quasi-tracking approach for finite-time control of a mass-beam system. Automatica 34(7):881–888 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 72.
    Ge SS, Lee TH, Zhu G (1996) Energy-based robust controller design for multi-link flexible robots. Mechatronics 6(7):779–798 CrossRefGoogle Scholar
  18. 73.
    Lee TH, Ge SS, Wang Z (2001) Adaptive robust controller design for multi-link flexible robots. Mechatronics 11(8):951–967 CrossRefGoogle Scholar
  19. 74.
    Ge SS, Lee TH, Wang Z (2001) Model-free regulation of multi-link smart materials robots. IEEE/ASME Trans Mechatron 6(3):346–351 CrossRefGoogle Scholar
  20. 80.
    Yang K-J, Hong K-S, Matsuno F (2004) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib 273(4–5):1007–1029 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 81.
    Nguyen QC, Hong K-S (2010) Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J Sound Vib 329(22):4588–4603 CrossRefGoogle Scholar
  22. 88.
    Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York CrossRefzbMATHGoogle Scholar
  23. 93.
    Morgul O (1992) Dynamic boundary control of a Euler–Bernoulli beam. IEEE Trans Autom Control 37(5):639–642 MathSciNetCrossRefGoogle Scholar
  24. 97.
    Geniele H, Patel R, Khorasani K (1997) End-point control of a flexible-link manipulator: theory and experiments. IEEE Trans Control Syst Technol 5(6):556–570 CrossRefGoogle Scholar
  25. 98.
    Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476 CrossRefzbMATHGoogle Scholar
  26. 101.
    Rahn C, Zhang F, Joshi S, Dawson D (1999) Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J Dyn Syst Meas Control 121:563–565 CrossRefGoogle Scholar
  27. 105.
    Fung RF, Tseng CC (1999) Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 121:105–110 CrossRefGoogle Scholar
  28. 107.
    Fard M, Sagatun S (2001) Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov’s direct method. J Dyn Syst Meas Control 123:195–200 CrossRefGoogle Scholar
  29. 110.
    Yang K-J, Hong K-S, Matsuno F (2005) Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans Autom Control 50(12):2053–2058 MathSciNetCrossRefGoogle Scholar
  30. 111.
    Yang K-J, Hong K-S, Matsuno F (2005) Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation. IEEE Trans Control Syst Technol 13(6):1045–1054 CrossRefGoogle Scholar
  31. 114.
    Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAM, Philadelphia CrossRefGoogle Scholar
  32. 116.
    Li T, Hou Z, Li J (2008) Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44(2):498–503 MathSciNetCrossRefGoogle Scholar
  33. 120.
    Endo K, Matsuno F, Kawasaki H (2009) Simple boundary cooperative control of two one-link flexible arms for grasping. IEEE Trans Autom Control 54(10):2470–2476 MathSciNetCrossRefGoogle Scholar
  34. 128.
    Baz A (1997) Dynamic boundary control of beams using active constrained layer damping. Mech Syst Signal Process 11(6):811–825 MathSciNetCrossRefGoogle Scholar
  35. 140.
    Smyshlyaev A, Guo B, Krstic M (2009) Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback. IEEE Trans Autom Control 54(5):1135 MathSciNetCrossRefGoogle Scholar
  36. 154.
    Nguyen TD (2008) Second-order observers for second-order distributed parameter systems in R 2. Syst Control Lett 57(10):787–795 CrossRefzbMATHGoogle Scholar
  37. 155.
    Nguyen TD (2009) Boundary output feedback of second-order distributed parameter systems. Syst Control Lett 58(7):519–528 CrossRefzbMATHGoogle Scholar
  38. 195.
    Wanderley J, Levi C (2005) Vortex induced loads on marine risers. Ocean Eng 32(11–12):1281–1295 CrossRefGoogle Scholar
  39. 196.
    Blevins R (1977) Flow-induced vibration. Van Nostrand Reinhold, New York zbMATHGoogle Scholar
  40. 227.
    Chakrabarti SK, Frampton RE (1982) Review of riser analysis techniques. Appl Ocean Res 4:73–90 CrossRefGoogle Scholar
  41. 228.
    Yamamoto C, Meneghini J, Saltara F, Fregonesi R, Ferrari J (2004) Numerical simulations of vortex-induced vibration on flexible cylinders. J Fluids Struct 19(4):467–489 CrossRefGoogle Scholar
  42. 229.
    Meneghini J, Saltara F, Fregonesi R, Yamamoto C, Casaprima E, Ferrari J (2004) Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. Eur J Mech B, Fluids 23(1):51–63 CrossRefzbMATHGoogle Scholar
  43. 237.
    Queiroz MS, Dawson DM, Nagarkatti SP, Zhang F (2000) Lyapunov based control of mechanical systems. Birkhauser, Boston CrossRefzbMATHGoogle Scholar
  44. 258.
    Karafyllis I, Christofides P, Daoutidis P (1999) Dynamics of a reaction-diffusion system with brusselator kinetics under feedback control. Phys Rev B 59:372–380 CrossRefGoogle Scholar
  45. 259.
    Nguyen T, Egeland O (2008) Infinite dimensional observer for a flexible robot arm with a tip load. Asian J Control 10(4):456–461 MathSciNetCrossRefGoogle Scholar
  46. 260.
    Demetriou M, Fahroo F (2006) Model reference adaptive control of structurally perturbed second-order distributed parameter systems. Int J Robust Nonlinear Control 16(16):773–799 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 261.
    Demetriou M (2004) Natural second-order observers for second-order distributed parameter systems. Syst Control Lett 51(3–4):225–234 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 262.
    Smyshlyaev A, Krstic M (2005) Backstepping observers for a class of parabolic PDEs. Syst Control Lett 54(7):613–625 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 263.
    Bounit H, Hammouri H (1997) Observers for infinite dimensional bilinear systems. Eur J Control 3(4):325–339 CrossRefzbMATHGoogle Scholar
  50. 264.
    Balas M (1999) Do all linear flexible structures have convergent second-order observers? J Guid Control Dyn 22(6):905–908 CrossRefGoogle Scholar
  51. 265.
    Xu C, Deguenon J, Sallet G (2006) Infinite dimensional observers for vibrating systems. In: Proceedings of the 45th IEEE conference on decision and control, pp 3979–3983 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Wei He
    • 1
  • Shuzhi Sam Ge
    • 2
  • Bernard Voon Ee How
    • 3
  • Yoo Sang Choo
    • 4
  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Dept of Electr. & Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Centre for Offshore Research & Engin.National University of SingaporeSingaporeSingapore
  4. 4.Dept of Civil & Environmental Engin.National University of SingaporeSingaporeSingapore

Personalised recommendations