Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2221 Accesses

Abstract

In Chap. 4, the model of the coupled crane-cable-payload with nonuniform parameters is presented. Positioning control is derived for the coupled system with uniform parameters using barrier Lyapunov functions. Through Lyapunov analysis, it is shown that the coupled crane–payload flexible system is stable under the control action, the physical limits from operations planning and safety specifications are not transgressed, and positioning of crane and payload is achieved. A stabilizing boundary control is proposed for the coupled system with nonuniform parameters. Rigorous Lyapunov stability analysis is carried out and the uniform boundedness of the system is shown under the proposed control. Finally, the performance of the proposed control is given through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slotine J, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and adaptive control design. Wiley, New York

    Google Scholar 

  3. Yang K-J, Hong K-S, Matsuno F (2004) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib 273(4–5):1007–1029

    Article  MathSciNet  MATH  Google Scholar 

  4. Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York

    Book  MATH  Google Scholar 

  5. Morgul O, Rao B, Conrad F (2002) On the stabilization of a cable with a tip mass. IEEE Trans Autom Control 39(10):2140–2145

    Article  MathSciNet  Google Scholar 

  6. Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476

    Article  MATH  Google Scholar 

  7. Fung RF, Tseng CC (1999) Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 121:105–110

    Article  Google Scholar 

  8. Choi J-Y, Hong K-S, Yang K-J (2004) Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control. J Vib Control 10(5):661

    Article  MathSciNet  MATH  Google Scholar 

  9. Li T, Hou Z, Li J (2008) Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44(2):498–503

    Article  MathSciNet  Google Scholar 

  10. Suzuki H, Tao Q, Yoshida K (1998) Automatic installation of underwater elastic structures under unknown currents. In: Proceedings of the international symposium on underwater technology, vol 14, pp 274–281

    Google Scholar 

  11. Watanabe K, Suzuki H, Tao Q, Yoshida K (1998) Basis research on underwater docking of flexible structures. In: IEEE international conference on robotics and automation, pp 458–463

    Google Scholar 

  12. Wanderley J, Levi C (2005) Vortex induced loads on marine risers. Ocean Eng 32(11–12):1281–1295

    Article  Google Scholar 

  13. Blevins R (1977) Flow-induced vibration. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  14. Ge SS, Wang C (2004) Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans Neural Netw 15(3):674–692

    Article  Google Scholar 

  15. Ngo K, Mahony R, Jiang Z (2005) Integrator backstepping using barrier functions for systems with multiple state constraints. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp 8306–8312

    Google Scholar 

  16. Tee KP, Ge SS, Tay EH (2009) Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45:918–927

    Article  MathSciNet  MATH  Google Scholar 

  17. Tee KP, Ge SS, Tay EH (2009) Adaptive control of electrostatic microactuators with bidirectional drive. IEEE Trans Control Syst Technol 17(2):340–352

    Article  Google Scholar 

  18. Sane KP, Bernstein DS, Corning-IntelliSense W (2002) Robust nonlinear control of the electromagnetically controlled oscillator. In: American control conference, pp. 809–814

    Google Scholar 

  19. Benaroya H (2004) Mechanical vibration, analysis, uncertainties and control. Marcel Dekker, New York

    MATH  Google Scholar 

  20. Lee EW (1957) Non-linear forced vibration of a stretched string. Br J Appl Phys 8:411–413

    Article  Google Scholar 

  21. Chakrabarti SK, Frampton RE (1982) Review of riser analysis techniques. Appl Ocean Res 4:73–90

    Article  Google Scholar 

  22. Yamamoto C, Meneghini J, Saltara F, Fregonesi R, Ferrari J (2004) Numerical simulations of vortex-induced vibration on flexible cylinders. J Fluids Struct 19(4):467–489

    Article  Google Scholar 

  23. Meneghini J, Saltara F, Fregonesi R, Yamamoto C, Casaprima E, Ferrari J (2004) Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. Eur J Mech B, Fluids 23(1):51–63

    Article  MATH  Google Scholar 

  24. Slotine JJ, Li W, Coetsee JA (1986) Adaptive sliding controller synthesis for non-linear systems. Taylor Francis, New York

    Google Scholar 

  25. Xu JX, Hashimoto H, Slotine JJ, Arai Y, Harashima F (1989) Implementation of VSS control to robotic manipulators-smoothing modification. IEEE Trans Ind Electron 36:321–329

    Article  Google Scholar 

  26. Polycarpou MM, Ioannou PA (1993) A robust adaptive non-linear control design. In: Proceedings of the American control conference, pp 1365–1369

    Google Scholar 

  27. Ledoux A, Molin B, Delhommeau G, Remy F (2006) Controlling line tension in thruster assisted mooring systems. In: Proceedings of the 21st international workshop water waves and floating bodies

    Google Scholar 

  28. Fossen T (2002) Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim

    Google Scholar 

  29. Lee S, Mote C Jr (1996) Vibration control of an axially moving string by boundary control. J Dyn Syst Meas Control 118:66

    Article  MATH  Google Scholar 

  30. Hover FS, Grosenbaugh MA, Triantafyllou MS (1994) Calculation of dynamic motions and tensions in towed underwater cables. IEEE J Ocean Eng 19(3):449–457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

He, W., Ge, S.S., How, B.V.E., Choo, Y.S. (2014). Installation System with Constraints. In: Dynamics and Control of Mechanical Systems in Offshore Engineering. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5337-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5337-5_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5336-8

  • Online ISBN: 978-1-4471-5337-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics