Advertisement

Installation System with Constraints

  • Wei He
  • Shuzhi Sam Ge
  • Bernard Voon Ee How
  • Yoo Sang Choo
Part of the Advances in Industrial Control book series (AIC)

Abstract

In Chap. 4, the model of the coupled crane-cable-payload with nonuniform parameters is presented. Positioning control is derived for the coupled system with uniform parameters using barrier Lyapunov functions. Through Lyapunov analysis, it is shown that the coupled crane–payload flexible system is stable under the control action, the physical limits from operations planning and safety specifications are not transgressed, and positioning of crane and payload is achieved. A stabilizing boundary control is proposed for the coupled system with nonuniform parameters. Rigorous Lyapunov stability analysis is carried out and the uniform boundedness of the system is shown under the proposed control. Finally, the performance of the proposed control is given through numerical simulations.

References

  1. 62.
    Slotine J, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs zbMATHGoogle Scholar
  2. 63.
    Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and adaptive control design. Wiley, New York Google Scholar
  3. 80.
    Yang K-J, Hong K-S, Matsuno F (2004) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib 273(4–5):1007–1029 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 88.
    Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York CrossRefzbMATHGoogle Scholar
  5. 94.
    Morgul O, Rao B, Conrad F (2002) On the stabilization of a cable with a tip mass. IEEE Trans Autom Control 39(10):2140–2145 MathSciNetCrossRefGoogle Scholar
  6. 98.
    Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476 CrossRefzbMATHGoogle Scholar
  7. 105.
    Fung RF, Tseng CC (1999) Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 121:105–110 CrossRefGoogle Scholar
  8. 108.
    Choi J-Y, Hong K-S, Yang K-J (2004) Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control. J Vib Control 10(5):661 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 116.
    Li T, Hou Z, Li J (2008) Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44(2):498–503 MathSciNetCrossRefGoogle Scholar
  10. 160.
    Suzuki H, Tao Q, Yoshida K (1998) Automatic installation of underwater elastic structures under unknown currents. In: Proceedings of the international symposium on underwater technology, vol 14, pp 274–281 Google Scholar
  11. 161.
    Watanabe K, Suzuki H, Tao Q, Yoshida K (1998) Basis research on underwater docking of flexible structures. In: IEEE international conference on robotics and automation, pp 458–463 Google Scholar
  12. 195.
    Wanderley J, Levi C (2005) Vortex induced loads on marine risers. Ocean Eng 32(11–12):1281–1295 CrossRefGoogle Scholar
  13. 196.
    Blevins R (1977) Flow-induced vibration. Van Nostrand Reinhold, New York zbMATHGoogle Scholar
  14. 203.
    Ge SS, Wang C (2004) Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans Neural Netw 15(3):674–692 CrossRefGoogle Scholar
  15. 221.
    Ngo K, Mahony R, Jiang Z (2005) Integrator backstepping using barrier functions for systems with multiple state constraints. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp 8306–8312 Google Scholar
  16. 222.
    Tee KP, Ge SS, Tay EH (2009) Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45:918–927 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 223.
    Tee KP, Ge SS, Tay EH (2009) Adaptive control of electrostatic microactuators with bidirectional drive. IEEE Trans Control Syst Technol 17(2):340–352 CrossRefGoogle Scholar
  18. 224.
    Sane KP, Bernstein DS, Corning-IntelliSense W (2002) Robust nonlinear control of the electromagnetically controlled oscillator. In: American control conference, pp. 809–814 Google Scholar
  19. 225.
    Benaroya H (2004) Mechanical vibration, analysis, uncertainties and control. Marcel Dekker, New York zbMATHGoogle Scholar
  20. 226.
    Lee EW (1957) Non-linear forced vibration of a stretched string. Br J Appl Phys 8:411–413 CrossRefGoogle Scholar
  21. 227.
    Chakrabarti SK, Frampton RE (1982) Review of riser analysis techniques. Appl Ocean Res 4:73–90 CrossRefGoogle Scholar
  22. 228.
    Yamamoto C, Meneghini J, Saltara F, Fregonesi R, Ferrari J (2004) Numerical simulations of vortex-induced vibration on flexible cylinders. J Fluids Struct 19(4):467–489 CrossRefGoogle Scholar
  23. 229.
    Meneghini J, Saltara F, Fregonesi R, Yamamoto C, Casaprima E, Ferrari J (2004) Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. Eur J Mech B, Fluids 23(1):51–63 CrossRefzbMATHGoogle Scholar
  24. 230.
    Slotine JJ, Li W, Coetsee JA (1986) Adaptive sliding controller synthesis for non-linear systems. Taylor Francis, New York Google Scholar
  25. 231.
    Xu JX, Hashimoto H, Slotine JJ, Arai Y, Harashima F (1989) Implementation of VSS control to robotic manipulators-smoothing modification. IEEE Trans Ind Electron 36:321–329 CrossRefGoogle Scholar
  26. 232.
    Polycarpou MM, Ioannou PA (1993) A robust adaptive non-linear control design. In: Proceedings of the American control conference, pp 1365–1369 Google Scholar
  27. 233.
    Ledoux A, Molin B, Delhommeau G, Remy F (2006) Controlling line tension in thruster assisted mooring systems. In: Proceedings of the 21st international workshop water waves and floating bodies Google Scholar
  28. 234.
    Fossen T (2002) Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim Google Scholar
  29. 235.
    Lee S, Mote C Jr (1996) Vibration control of an axially moving string by boundary control. J Dyn Syst Meas Control 118:66 CrossRefzbMATHGoogle Scholar
  30. 236.
    Hover FS, Grosenbaugh MA, Triantafyllou MS (1994) Calculation of dynamic motions and tensions in towed underwater cables. IEEE J Ocean Eng 19(3):449–457 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Wei He
    • 1
  • Shuzhi Sam Ge
    • 2
  • Bernard Voon Ee How
    • 3
  • Yoo Sang Choo
    • 4
  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Dept of Electr. & Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Centre for Offshore Research & Engin.National University of SingaporeSingaporeSingapore
  4. 4.Dept of Civil & Environmental Engin.National University of SingaporeSingaporeSingapore

Personalised recommendations