Advertisement

Preliminaries

  • Wei He
  • Shuzhi Sam Ge
  • Bernard Voon Ee How
  • Yoo Sang Choo
Part of the Advances in Industrial Control book series (AIC)

Abstract

Chapter 2 presents several lemmas and properties used in the subsequent development and derivations of the dynamical models, and further stability analysis for the marine mechanical structures.

Keywords

Radial Basis Function Strouhal Number Bluff Body Radial Basis Function Hamilton Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vib 320:758–776 CrossRefGoogle Scholar
  2. 65.
    Ge SS, Hang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer Academic, Boston Google Scholar
  3. 88.
    Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York CrossRefzbMATHGoogle Scholar
  4. 193.
    Goldstein H (1951) Classical mechanics. Addison-Wesley, Massachusetts zbMATHGoogle Scholar
  5. 194.
    Meirovitch L (1967) Analytical methods in vibration. Macmillan, New York Google Scholar
  6. 195.
    Wanderley J, Levi C (2005) Vortex induced loads on marine risers. Ocean Eng 32(11–12):1281–1295 CrossRefGoogle Scholar
  7. 196.
    Blevins R (1977) Flow-induced vibration. Van Nostrand Reinhold, New York zbMATHGoogle Scholar
  8. 197.
    Faltinsen OM (1990) Sea loads on ships and offshore structures. Cambridge University Press, Cambridge Google Scholar
  9. 198.
    Sanner RM, Slotine JE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Netw 3(6):837–863 CrossRefGoogle Scholar
  10. 199.
    Pedersen M (2000) Functional analysis in applied mathematics and engineering. CRC Press, New York zbMATHGoogle Scholar
  11. 200.
    Hardy GH, Littlewood JE, Polya G (1959) Inequalities. Cambridge University Press, Cambridge Google Scholar
  12. 201.
    Horn R, Johnson C (1990) Matrix analysis. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  13. 202.
    Dawson D, Qu Z, Lewis F, Dorsey J (1990) Robust control for the tracking of robot motion. Int J Control 52(3):581–595 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 203.
    Ge SS, Wang C (2004) Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans Neural Netw 15(3):674–692 CrossRefGoogle Scholar
  15. 204.
    Lin W, Qian C (2002) Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans Autom Control 47(8):1249–1266 MathSciNetCrossRefGoogle Scholar
  16. 205.
    Ge SS, Hang CC, Zhang T (1999) Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans Syst Man Cybern 29(6):818–828 CrossRefGoogle Scholar
  17. 206.
    Behtash S (1990) Robust output tracking for nonlinear system. Int J Control 51(6):931–933 MathSciNetCrossRefGoogle Scholar
  18. 207.
    Tee KP, Ge SS, Tay EH (2009) Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4):918–927 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Wei He
    • 1
  • Shuzhi Sam Ge
    • 2
  • Bernard Voon Ee How
    • 3
  • Yoo Sang Choo
    • 4
  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Dept of Electr. & Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Centre for Offshore Research & Engin.National University of SingaporeSingaporeSingapore
  4. 4.Dept of Civil & Environmental Engin.National University of SingaporeSingaporeSingapore

Personalised recommendations