Advertisement

Introduction

  • Wei He
  • Shuzhi Sam Ge
  • Bernard Voon Ee How
  • Yoo Sang Choo
Part of the Advances in Industrial Control book series (AIC)

Abstract

Chapter 1 introduces the system description, background, and motivation of the study and presents several general concepts and fundamental observations.

Keywords

Boundary Control Mooring Line Mooring System Lyapunov Direct Method Flexible Riser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rowe S, Mackenzie B, Snell R (2001) Deep water installation of subsea hardware. In: Proceedings of the 10th offshore symposium Google Scholar
  2. 2.
    Eastaugh P (2005) Wideband wins the day at Ormen Lange, subsea special offshore engineer, pp 32–34 Google Scholar
  3. 3.
    Kaewunruen S, Chiravatchradj J, Chucheepsakul S (2005) Nonlinear free vibrations of marine risers/pipes transport fluid. Ocean Eng 32(3–4):417–440 Google Scholar
  4. 4.
    How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vib 320:758–776 Google Scholar
  5. 5.
    Rustad AM (2007) Modeling and control of top tensioned risers. PhD thesis, Norwegian University of Science and Technology Google Scholar
  6. 6.
    Huse E (1993) Interaction in deep-sea riser arrays. In: The 25th annual offshore technology conference, Houston, TX, pp 313–322 Google Scholar
  7. 7.
    How BVE, Ge SS, Choo YS (2010) Dynamic load positioning for subsea installation via adaptive neural control. IEEE J Ocean Eng 35(2):366–375 Google Scholar
  8. 8.
    How BVE, Ge SS, Choo YS (2011) Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans Control Syst Technol 19(1):208–220 Google Scholar
  9. 9.
    He W, Ge SS, Zhang S (2011) Adaptive boundary control of a flexible marine installation system. Automatica 47(12):2728–2734 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Van Amerongen J (1984) Adaptive steering of ships—a model reference approach. Automatica 20(1):3–14 zbMATHGoogle Scholar
  11. 11.
    Sorensen A, Sagatun S, Fossen T (1996) Design of a dynamic positioning system using model-based control. Control Eng Pract 4(3):359–368 Google Scholar
  12. 12.
    Fossen T, Grovlen A (1998) Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans Control Syst Technol 6(1):121–128 Google Scholar
  13. 13.
    Ghommam J, Mnif F, Benali A, Derbel N (2006) Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Trans Control Syst Technol 14(6):1150–1157 Google Scholar
  14. 14.
    Tee KP, Ge SS (2006) Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans Control Syst Technol 14:750–756 Google Scholar
  15. 15.
    Nguyen T, Sorensen A, Tong Quek S (2007) Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica 43(5):768–785 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Suzuki H, Tao Q, Yoshida K (2002) Automatic installation of underwater elastic structures under unknown currents. In: Proceedings of 1998 international symposium on underwater technology. IEEE, New York, pp 274–281 Google Scholar
  17. 17.
    Watanabe K, Suzuki H, Qi T, Toshida K (1998) Basic research on underwater docking of flexible structures. In: Proceedings of IEEE international conference on robotics and automation, vol 1. IEEE, New York, pp 458–463 Google Scholar
  18. 18.
    How BVE (2009) Modeling and control of subsea installation. PhD thesis, National University of Singapore Google Scholar
  19. 19.
    Ge SS, He W, Ren B, Choo YS (2010) Boundary control of a flexible marine installation system. In: Proceedings of the 49th IEEE conference on decision and control, Atlanta, GA, vol 1, pp 2590–2595 Google Scholar
  20. 20.
    He W (2011) Modeling and control of marine flexible systems. PhD thesis, National University of Singapore Google Scholar
  21. 21.
    Fung P, Grimble M (1983) Dynamic ship positioning using a self-tuning Kalman filter. IEEE Trans Autom Control 28(3):339–350 zbMATHGoogle Scholar
  22. 22.
    Saelid S, Jenssen N, Balchen J (1983) Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. IEEE Trans Autom Control 28(3):331–339 Google Scholar
  23. 23.
    Robertsson A, Johansson R (1998) Comments on “Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping”. IEEE Trans Control Syst Technol 6(3):439–441 Google Scholar
  24. 24.
    Fossen TI, Strand JP (1999) Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with as supply vessel. Automatica 35(1):3–16 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fossen TI, Strand JP (2001) Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results. Automatica 37(5):701–715 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Do KD, Jiang ZP, Pan J (2005) Global partial-state feedback and output-feedback tracking controllers for underactuated ships. Syst Control Lett 54(10):1015–1036 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Do KD, Pan J (2006) Underactuated ships follow smooth paths with integral actions and without velocity measurements for feedback: theory and experiments. IEEE Trans Control Syst Technol 14(2):308–322 Google Scholar
  28. 28.
    Do KD, Pan J (2009) Control of ships and underwater vehicles: design for underactuated and nonlinear marine systems. Springer, New York Google Scholar
  29. 29.
    Leira BJ, Sorensen AJ, Larsen CM (2004) A reliability-based control algorithm for dynamic positioning of floating vessels. Struct Saf 26(1):1–28 Google Scholar
  30. 30.
    Aamo O, Fossen T (1999) Controlling line tension in thruster assisted mooring systems. In: Proceedings of the IEEE international conference on control applications, Hawaii, US, vol 2, pp 1009–1104 Google Scholar
  31. 31.
    Berntsen P, Aamo O, Leira B (2009) Ensuring mooring line integrity by dynamic positioning: controller design and experimental tests. Automatica 45(5):1285–1290 MathSciNetzbMATHGoogle Scholar
  32. 32.
    Nguyen DT, Sorensen AJ (2009) Switching control for thruster-assisted position mooring. Control Eng Pract 17(9):985–994 Google Scholar
  33. 33.
    Nguyen DT, Sorensen AJ (2009) Setpoint chasing for thruster-assisted position mooring. IEEE J Ocean Eng 34(4):548–558 Google Scholar
  34. 34.
    Nguyen DH, Nguyen DT, Quek S, Sorensen A (2010) Control of marine riser end angles by position mooring. Control Eng Pract 18(9):1013–1021 Google Scholar
  35. 35.
    Aamo O, Fossen T (2001) Finite element modelling of moored vessels. Math Comput Model Dyn Syst 7(1):47–75 zbMATHGoogle Scholar
  36. 36.
    Sorensen AJ, Strand JP, Fossen TI (1999) Thruster assisted position mooring system for turret-anchored FPSOs. In: Proceedings of the 1999 IEEE international conference on control applications, vol 2 Google Scholar
  37. 37.
    Dai S-L, Wang C, Luo F (2012) Identification and learning control of ocean surface ship using neural networks. IEEE Trans Ind Inform 8(34):801–810 Google Scholar
  38. 38.
    Cui R, Ge SS, How VEB, Choo YS (2010) Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Eng 37(17):1491–1502 Google Scholar
  39. 39.
    Berntsen PIB, Aamo OM, Leira BJ, Sørensen AJ (2008) Structural reliability-based control of moored interconnected structures. Control Eng Pract 16(4):495–504 Google Scholar
  40. 40.
    Chen M, Ge SS, How BVE, Choo YS (2012) Robust adaptive position mooring control for marine vessels. IEEE Trans Control Syst Technol 99:1–15 Google Scholar
  41. 41.
    Huang T, Chucheepsakul S (1985) Large displacement analysis of a marine riser. J Energy Resour Technol 107:54 Google Scholar
  42. 42.
    Bernitsas M, Kokarakis J, Imron A (1985) Large deformation three-dimensional static analysis of deep water marine risers. Appl Ocean Res 7(4):178–187 Google Scholar
  43. 43.
    Huang T, Kang Q (1991) Three dimensional analysis of a marine riser with large displacements. Int J Offshore Polar Eng 1(4):300–306 Google Scholar
  44. 44.
    Patel M, Jesudasen A (1987) Theory and model tests for the dynamic response of free hanging risers. J Sound Vib 112(1):149–166 Google Scholar
  45. 45.
    Young RD, Fowler JR, Fisher EA, Luke RR (1978) Dynamic analysis as an aid to the design of marine risers. J Press Vessel Technol 100:200–205 Google Scholar
  46. 46.
    Aldraihem O, Wetherhold R, Singh T (1997) Distributed control of laminated beams: Timoshenko theory vs Euler–Bernoulli theory. J Intell Mater Syst Struct 8(2):149 Google Scholar
  47. 47.
    Do K, Pan J (2009) Boundary control of three-dimensional inextensible marine risers. J Sound Vib 327(3–5):299–321 Google Scholar
  48. 48.
    Do K, Pan J (2008) Boundary control of transverse motion of marine risers with actuator dynamics. J Sound Vib 318(4–5):768–791 Google Scholar
  49. 49.
    Ge SS, He W, How BVE, Choo YS (2010) Boundary control of a coupled nonlinear flexible marine riser. IEEE Trans Control Syst Technol 18(5):1080–1091 Google Scholar
  50. 50.
    He W, Ge SS, How BVE, Choo YS, Hong K-S (2011) Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4):722–732 MathSciNetzbMATHGoogle Scholar
  51. 51.
    He W, How BVE, Ge SS, Choo YS (2010) Boundary control of a flexible marine riser with vessel dynamics. In: Proceedings of the American control conference, Baltimore, MD, pp 1532–1537 Google Scholar
  52. 52.
    Logan JD (2006) Applied mathematics, 3rd edn. Wiley, New York zbMATHGoogle Scholar
  53. 53.
    Balas MJ (1978) Feedback control of flexible systems. IEEE Trans Autom Control 23:673–679 zbMATHGoogle Scholar
  54. 54.
    Vandegrift MW, Lewis FL, Zhu SQ (1994) Flexible-link robot arm control by a feedback linearization/singular perturbation approach. J Robot Syst 11(7):591–603 zbMATHGoogle Scholar
  55. 55.
    Lin J, Lewis FL (1994) Enhanced measurement and estimation methodology for flexible link arm control. J Robot Syst 11(5):367–385 Google Scholar
  56. 56.
    Lin J, Lewis FL (1994) A symbolic formulation of dynamic equations for a manipulator with rigid and flexible links. Int J Robot Res 13(5):454 Google Scholar
  57. 57.
    Armaou A, Christofides P (2000) Wave suppression by nonlinear finite-dimensional control. Chem Eng Sci 55(14):2627–2640 Google Scholar
  58. 58.
    Christofides P, Armaou A (2000) Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control. Syst Control Lett 39(4):283–294 MathSciNetzbMATHGoogle Scholar
  59. 59.
    Sakawa Y, Matsuno F, Fukushima S (1985) Modeling and feedback control of a flexible arm. J Robot Syst 2(4):453–472 Google Scholar
  60. 60.
    Ge SS, Lee TH, Zhu G (1997) A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model. J Robot Syst 14(3):165–178 zbMATHGoogle Scholar
  61. 61.
    Ge SS, Lee TH, Zhu G (1997) Non-model-based position control of a planar multi-link flexible robot. Mech Syst Signal Process 11(5):707–724 Google Scholar
  62. 62.
    Slotine J, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs zbMATHGoogle Scholar
  63. 63.
    Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and adaptive control design. Wiley, New York Google Scholar
  64. 64.
    Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, London Google Scholar
  65. 65.
    Ge SS, Hang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer Academic, Boston Google Scholar
  66. 66.
    Khalil HK (2002) Nonlinear systems. Prentice Hall, New Jersey zbMATHGoogle Scholar
  67. 67.
    Ge SS, Lee TH, Zhu G (1998) Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans Robot Autom 14(1):179–185 Google Scholar
  68. 68.
    Balas MJ (1978) Active control of flexible systems. J Optim Theory Appl 25:415–436 MathSciNetzbMATHGoogle Scholar
  69. 69.
    Meirovitch L, Baruh H (1983) On the problem of observation spillover in self-adjoint distributed systems. J Optim Theory Appl 30(2):269–291 MathSciNetGoogle Scholar
  70. 70.
    Ge SS, Lee TH, Zhu G, Hong F (2001) Variable structure control of a distributed parameter flexible beam. J Robot Syst 18:17–27 zbMATHGoogle Scholar
  71. 71.
    Zhu G, Ge SS (1998) A quasi-tracking approach for finite-time control of a mass-beam system. Automatica 34(7):881–888 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Ge SS, Lee TH, Zhu G (1996) Energy-based robust controller design for multi-link flexible robots. Mechatronics 6(7):779–798 Google Scholar
  73. 73.
    Lee TH, Ge SS, Wang Z (2001) Adaptive robust controller design for multi-link flexible robots. Mechatronics 11(8):951–967 Google Scholar
  74. 74.
    Ge SS, Lee TH, Wang Z (2001) Model-free regulation of multi-link smart materials robots. IEEE/ASME Trans Mechatron 6(3):346–351 Google Scholar
  75. 75.
    Bentsman J, Hong K-S (1991) Vibrational stabilization of nonlinear parabolic systems with Neumann boundary conditions. IEEE Trans Autom Control 36(4):501–507 MathSciNetGoogle Scholar
  76. 76.
    Bentsman J, Hong K-S, Fakhfakh J (1991) Vibrational control of nonlinear time lag systems: vibrational stabilization and transient behavior. Automatica 27(3):491–500 MathSciNetzbMATHGoogle Scholar
  77. 77.
    Bentsman J, Hong K-S (1993) Transient behavior analysis of vibrationally controlled nonlinear parabolic systems with Neumann boundary conditions. IEEE Trans Autom Control 38(10):1603–1607 MathSciNetzbMATHGoogle Scholar
  78. 78.
    Hong K-S, Bentsman J (1994) Direct adaptive control of parabolic systems: algorithm synthesis and convergence and stability analysis. IEEE Trans Autom Control 39(10):2018–2033 MathSciNetzbMATHGoogle Scholar
  79. 79.
    Hong K-S, Bentsman J (1994) Application of averaging method for integro-differential equations to model reference adaptive control of parabolic systems. Automatica 30(9):1415–1419 MathSciNetzbMATHGoogle Scholar
  80. 80.
    Yang K-J, Hong K-S, Matsuno F (2004) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib 273(4–5):1007–1029 MathSciNetzbMATHGoogle Scholar
  81. 81.
    Nguyen QC, Hong K-S (2010) Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J Sound Vib 329(22):4588–4603 Google Scholar
  82. 82.
    Nguyen QC, Hong K-S (2012) Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J Sound Vib 331(13):3006–3019 Google Scholar
  83. 83.
    Bamieh B, Paganini F, Dahleh M (2002) Distributed control of spatially invariant systems. IEEE Trans Autom Control 47(7):1091–1107 MathSciNetGoogle Scholar
  84. 84.
    Wu F (2003) Distributed control for interconnected linear parameter-dependent systems. IEE Proc, Control Theory Appl 150:518 Google Scholar
  85. 85.
    Banks H, Smith R, Wang Y (1997) Smart material structures: modeling, estimation, and control. Wiley, New York Google Scholar
  86. 86.
    Ge SS, Lee TH, Gong J, Wang Z (2000) Model-free controller design for a single-link flexible smart materials robot. Int J Control 73(6):531–544 MathSciNetzbMATHGoogle Scholar
  87. 87.
    Ge SS, Lee TH, Gong JQ (1999) A robust distributed controller of a single-link SCARA/Cartesian smart materials robot. Mechatronics 9(1):65–93 Google Scholar
  88. 88.
    Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York zbMATHGoogle Scholar
  89. 89.
    Ge SS, Lee TH, Zhu G (1996) Genetic algorithm tuning of Lyapunov-based controllers: an application to a single-link flexible robot system. IEEE Trans Ind Electron 43(5):567–574 Google Scholar
  90. 90.
    Ge SS, Lee TH, Zhu G (1998) Asymptotically stable end-point regulation of a flexible SCARA/Cartesian robot. IEEE/ASME Trans Mechatron 3(2):138–144 Google Scholar
  91. 91.
    Morgul O (1990) Control and stabilization of a flexible beam attached to a rigid body. Int J Control 51(1):11–31 MathSciNetGoogle Scholar
  92. 92.
    Morgul O (1991) Orientation and stabilization of a flexible beam attached to a rigid body: planar motion. IEEE Trans Autom Control 36(8):953–962 MathSciNetGoogle Scholar
  93. 93.
    Morgul O (1992) Dynamic boundary control of a Euler–Bernoulli beam. IEEE Trans Autom Control 37(5):639–642 MathSciNetGoogle Scholar
  94. 94.
    Morgul O, Rao B, Conrad F (2002) On the stabilization of a cable with a tip mass. IEEE Trans Autom Control 39(10):2140–2145 MathSciNetGoogle Scholar
  95. 95.
    Morgul O (1994) A dynamic control law for the wave equation. Automatica 30(11):1785–1792 MathSciNetGoogle Scholar
  96. 96.
    Morgul O (1994) Control and stabilization of a rotating flexible structure. Automatica 30(2):351–356 MathSciNetGoogle Scholar
  97. 97.
    Geniele H, Patel R, Khorasani K (1997) End-point control of a flexible-link manipulator: theory and experiments. IEEE Trans Control Syst Technol 5(6):556–570 Google Scholar
  98. 98.
    Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476 zbMATHGoogle Scholar
  99. 99.
    Qu Z (2002) An iterative learning algorithm for boundary control of a stretched moving string. Automatica 38(5):821–827 MathSciNetzbMATHGoogle Scholar
  100. 100.
    Qu Z, Xu J (2002) Model-based learning controls and their comparisons using Lyapunov direct method. Asian J Control 4(1):99–110 Google Scholar
  101. 101.
    Rahn C, Zhang F, Joshi S, Dawson D (1999) Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J Dyn Syst Meas Control 121:563–565 Google Scholar
  102. 102.
    Baicu CF, Rahn CD, Nibali BD (1996) Active boundary control of elastic cables: theory and experiment. J Sound Vib 198:17–26 Google Scholar
  103. 103.
    Shahruz SM, Krishna LG (1996) Boundary control of a nonlinear string. J Sound Vib 195:169–174 MathSciNetzbMATHGoogle Scholar
  104. 104.
    Hu J (1999) Active impedance control of linear one-dimensional wave equations. Int J Control 72(3):247–257 zbMATHGoogle Scholar
  105. 105.
    Fung RF, Tseng CC (1999) Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 121:105–110 Google Scholar
  106. 106.
    Fard M, Sagatun S (2001) Exponential stabilization of a transversely vibrating beam via boundary control. J Sound Vib 240(4):613–622 MathSciNetzbMATHGoogle Scholar
  107. 107.
    Fard M, Sagatun S (2001) Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov’s direct method. J Dyn Syst Meas Control 123:195–200 Google Scholar
  108. 108.
    Choi J-Y, Hong K-S, Yang K-J (2004) Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control. J Vib Control 10(5):661 MathSciNetzbMATHGoogle Scholar
  109. 109.
    Yang K-J, Hong K-S, Matsuno F (2005) Boundary control of a translating tensioned beam with varying speed. IEEE/ASME Trans Mechatron 10(5):594–597 Google Scholar
  110. 110.
    Yang K-J, Hong K-S, Matsuno F (2005) Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans Autom Control 50(12):2053–2058 MathSciNetGoogle Scholar
  111. 111.
    Yang K-J, Hong K-S, Matsuno F (2005) Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation. IEEE Trans Control Syst Technol 13(6):1045–1054 Google Scholar
  112. 112.
    Kim C-S, Hong K-S (2009) Boundary control of container cranes from the perspective of controlling an axially moving string system. Int J Control Autom Syst 7(3):437–445 Google Scholar
  113. 113.
    Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339 Google Scholar
  114. 114.
    Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAM, Philadelphia Google Scholar
  115. 115.
    Li T, Hou Z (2006) Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback. J Sound Vib 296(4–5):861–870 MathSciNetzbMATHGoogle Scholar
  116. 116.
    Li T, Hou Z, Li J (2008) Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44(2):498–503 MathSciNetGoogle Scholar
  117. 117.
    Mahmood IA, Moheimani SOR, Bhikkaji B (2008) Precise tip positioning of a flexible manipulator using resonant control. IEEE/ASME Trans Mechatron 13(2):180–186 Google Scholar
  118. 118.
    Pereira E, Aphale SS, Feliu V, Moheimani SOR (2010) Integral resonant control for vibration damping and precise tip-positioning of a single-link flexible manipulator. IEEE/ASME Trans Mechatron 99:1–9 Google Scholar
  119. 119.
    Halim D, Moheimani SOR (2001) Spatial resonant control of flexible structures-application to a piezoelectric laminate beam. IEEE Trans Control Syst Technol 9(1):37–53 Google Scholar
  120. 120.
    Endo K, Matsuno F, Kawasaki H (2009) Simple boundary cooperative control of two one-link flexible arms for grasping. IEEE Trans Autom Control 54(10):2470–2476 MathSciNetGoogle Scholar
  121. 121.
    He W, Ge SS (2012) Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance. IEEE Trans Control Syst Technol 20(1):48–58 Google Scholar
  122. 122.
    He W, Ge SS, Hang CC, Hong K-S (2010) Boundary control of a vibrating string under unknown time-varying disturbance. In: The 49th IEEE conference on decision and control, Atlanta, GA, pp 2584–2589 Google Scholar
  123. 123.
    Zhang S, Ge SS, He W, Hong K-S (2011) Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance. In: Proceedings of the IFAC world congress, Milano, Italy, pp 7678–7683 Google Scholar
  124. 124.
    Ge SS, He W, Zhang S (2012) Modeling and control of a flexible riser with application to marine installation. In: Proceedings of the 2012 American control conference, Montreal, Canada, pp 664–669 Google Scholar
  125. 125.
    He W, Zhang S, Ge SS (2012) Boundary output-feedback stabilization of a Timoshenko beam using disturbance observer. IEEE Trans Ind Electron 60(11):5186–5194 Google Scholar
  126. 126.
    Ge SS, Zhang S, He W (2011) Vibration control of a coupled nonlinear string system in transverse and longitudinal directions. In: Proceedings of the 50th IEEE conference on decision and control and European control conference (CDC-ECC), Orlando, FL, vol 1, pp 3742–3747 Google Scholar
  127. 127.
    de Queiroz MS, Rahn CD (2002) Boundary control of vibration and noise in distributed parameter systems: an overview. Mech Syst Signal Process 16:19–38 Google Scholar
  128. 128.
    Baz A (1997) Dynamic boundary control of beams using active constrained layer damping. Mech Syst Signal Process 11(6):811–825 MathSciNetGoogle Scholar
  129. 129.
    Tanaka N, Iwamoto H (2007) Active boundary control of an Euler–Bernoulli beam for generating vibration-free state. J Sound Vib 304:570–586 MathSciNetzbMATHGoogle Scholar
  130. 130.
    Zhang S, He W, Ge SS (2012) Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance. IEEE/ASME Trans Mechatron 17(6):1196–1203 Google Scholar
  131. 131.
    Ge SS, Zhang S, He W (2011) Vibration control of an Euler–Bernoulli beam under unknown spatiotemporally varying disturbance. Int J Control 84(5):947–960 MathSciNetzbMATHGoogle Scholar
  132. 132.
    He W, Ge SS, Zhang S (2012) Modeling and control design for a multi-cable mooring system. In: Proceedings of the Chinese control conference, Hefei, China, pp 1285–1290 Google Scholar
  133. 133.
    Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhauser, Boston zbMATHGoogle Scholar
  134. 134.
    Smyshlyaev A, Krstic M (2010) Adaptive control of parabolic PDEs. Princeton University Press, New Jersey zbMATHGoogle Scholar
  135. 135.
    Vazquez R, Krstic M (2008) Control of 1-d parabolic PDEs with Volterra nonlinearities, part I: design. Automatica 44(11):2778–2790 MathSciNetzbMATHGoogle Scholar
  136. 136.
    Vazquez R, Krstic M (2008) Control of 1D parabolic PDEs with Volterra nonlinearities, part II: analysis. Automatica 44(11):2791–2803 MathSciNetzbMATHGoogle Scholar
  137. 137.
    Krstic M, Siranosian A, Balogh A, Guo B (2007) Control of strings and flexible beams by backstepping boundary control. In: Proceedings of the 2007 American control conference, pp 882–887 Google Scholar
  138. 138.
    Krstic M (2008) Optimal adaptive control-contradiction in terms or a matter of choosing the right cost functional? IEEE Trans Autom Control 53(8):1942–1947 MathSciNetGoogle Scholar
  139. 139.
    Krstic M, Smyshlyaev A (2008) Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett 57(9):750–758 MathSciNetzbMATHGoogle Scholar
  140. 140.
    Smyshlyaev A, Guo B, Krstic M (2009) Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback. IEEE Trans Autom Control 54(5):1135 MathSciNetGoogle Scholar
  141. 141.
    Krstic M, Smyshlyaev A (2008) Adaptive control of PDEs. Annu Rev Control 32(2):149–160 MathSciNetGoogle Scholar
  142. 142.
    Krstic M, Smyshlyaev A (2008) Adaptive boundary control for unstable parabolic PDEs, part I: Lyapunov design. IEEE Trans Autom Control 53(7):1575 MathSciNetGoogle Scholar
  143. 143.
    Smyshlyaev A, Krstic M (2007) Adaptive boundary control for unstable parabolic PDEs, part II: estimation-based designs. Automatica 43(9):1543–1556 MathSciNetzbMATHGoogle Scholar
  144. 144.
    Smyshlyaev A, Krstic M (2007) Adaptive boundary control for unstable parabolic PDEs, part III: output feedback examples with swapping identifiers. Automatica 43(9):1557–1564 MathSciNetzbMATHGoogle Scholar
  145. 145.
    Guo B, Guo W (2009) The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica 45(3):790–797 MathSciNetzbMATHGoogle Scholar
  146. 146.
    Huang D, Xu J-X (2011) Steady-state iterative learning control for a class of nonlinear pde processes. J Process Control 21(8):1155–1163 Google Scholar
  147. 147.
    Luo Z, Guo B-Z, Morgul O (1999) Stability and stabilization of infinite dimensional systems with applications. Springer, London zbMATHGoogle Scholar
  148. 148.
    Sakawa Y, Luo Z (1989) Modeling and control of coupled bending and torsional vibrations of flexible beams. IEEE Trans Autom Control 34(9):970–977 MathSciNetzbMATHGoogle Scholar
  149. 149.
    Luo Z (1993) Direct strain feedback control of flexible robot arms: new theoretical and experimental results. IEEE Trans Autom Control 38(11):1610–1622 zbMATHGoogle Scholar
  150. 150.
    Luo Z, Guo B-Z (1995) Further theoretical results on direct strain feedback control of flexible robot arms. IEEE Trans Autom Control 40(4):747–751 MathSciNetzbMATHGoogle Scholar
  151. 151.
    Luo Z, Kitamura N, Guo B-Z (1995) Shear force feedback control of flexible robot arms. IEEE Trans Robot Autom 11(5):760–765 Google Scholar
  152. 152.
    Guo B-Z, Shao Z-C (2009) Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst Control Lett 58(5):334–341 MathSciNetzbMATHGoogle Scholar
  153. 153.
    Guo B-Z, Xu C-Z (2007) The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation. IEEE Trans Autom Control 52(2):371–377 MathSciNetGoogle Scholar
  154. 154.
    Nguyen TD (2008) Second-order observers for second-order distributed parameter systems in R 2. Syst Control Lett 57(10):787–795 zbMATHGoogle Scholar
  155. 155.
    Nguyen TD (2009) Boundary output feedback of second-order distributed parameter systems. Syst Control Lett 58(7):519–528 zbMATHGoogle Scholar
  156. 156.
    Curtain R, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New York zbMATHGoogle Scholar
  157. 157.
    Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, New York zbMATHGoogle Scholar
  158. 158.
    Bensoussan A, Prato G, Delfour M, Mitter S (2007) Representation and control of infinite dimensional systems zbMATHGoogle Scholar
  159. 159.
    Guo B-Z, Jin F-F (2010) Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback. Automatica 46(7):1203–1209 MathSciNetzbMATHGoogle Scholar
  160. 160.
    Suzuki H, Tao Q, Yoshida K (1998) Automatic installation of underwater elastic structures under unknown currents. In: Proceedings of the international symposium on underwater technology, vol 14, pp 274–281 Google Scholar
  161. 161.
    Watanabe K, Suzuki H, Tao Q, Yoshida K (1998) Basis research on underwater docking of flexible structures. In: IEEE international conference on robotics and automation, pp 458–463 Google Scholar
  162. 162.
    Hover F (1993) Experiments in dynamic positioning of a towed pipe. In: Proceedings of engineering in harmony with the ocean. IEEE, New York, pp 484–490 Google Scholar
  163. 163.
    Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314 MathSciNetzbMATHGoogle Scholar
  164. 164.
    Khanna T (1990) Foundations of neural networks zbMATHGoogle Scholar
  165. 165.
    Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192 Google Scholar
  166. 166.
    Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366 Google Scholar
  167. 167.
    Cherkassky V, Gehring D, Mulier F (1996) Comparison of adaptive methods for function estimation from samples. IEEE Trans Neural Netw 7(4):969–984 Google Scholar
  168. 168.
    Wang C, Ge S (2001) Adaptive backstepping control of uncertain Lorenz system. Int J Bifurc Chaos Appl Sci Eng 11(4):1115–1120 MathSciNetzbMATHGoogle Scholar
  169. 169.
    Moraal P, Grizzle J (1995) Observer design for nonlinear systems with discrete-time measurements. IEEE Trans Autom Control 40(3):395–404 MathSciNetzbMATHGoogle Scholar
  170. 170.
    Dabroom A, Khalil H (2001) Output feedback sampled-data control of nonlinear systems using high-gain observers. IEEE Trans Autom Control 46(11):1712–1725 MathSciNetzbMATHGoogle Scholar
  171. 171.
    Lewis FL, Jagannathan S, Yeşildirek A (1999) Neural network control of robot manipulators and nonlinear systems. CRC, Boca Raton Google Scholar
  172. 172.
    Vemuri A, Polycarpou M (1997) Neural-network-based robust fault diagnosis in robotic systems. IEEE Trans Neural Netw 8(6):1410–1420 Google Scholar
  173. 173.
    Vemuri A, Polycarpou M, Diakourtis S (1998) Neural network based fault detection in robotic manipulators. IEEE Trans Robot Autom 14(2):342–348 Google Scholar
  174. 174.
    Chen FC, Liu CC (1994) Adaptively controlling nonlinear continuous-time systems using multilayer neural networks. IEEE Trans Autom Control 39(6):1206–1310 Google Scholar
  175. 175.
    Ge SS, Lee TH, Ren SX (2001) Adaptive friction compensation of servo mechanisms. Fuzzy Sets Syst 32(4):523–532 zbMATHGoogle Scholar
  176. 176.
    Tan KK, Huang SN, Lee TH (2004) Adaptive backstepping control for a class of nonlinear systems using neural network approximations. Int J Robust Nonlinear Control 14:643–664 MathSciNetzbMATHGoogle Scholar
  177. 177.
    Narendra KS, Parthasarathy K (1990) Identification and control of dynamic systems using neural networks. IEEE Trans Neural Netw 1(1):4–27 Google Scholar
  178. 178.
    Levin AU, Narendra KS (1996) Control of nonlinear dynamical systems using neural networks, part II: observability, identification, and control. IEEE Trans Neural Netw 7(1):30–42 Google Scholar
  179. 179.
    Lewis FL, Jagannathan S, Yeildirek A (1999) Neural network control of robot manipulators and nonlinear systems Google Scholar
  180. 180.
    Ge SS, Hang CC, Zhang T (1998) Nonlinear adaptive control using neural network and its application to CSTR systems. J Process Control 9:313–323 Google Scholar
  181. 181.
    Zhang T, Ge SS, Hang CC (1999) Design and performance analysis of a direct adaptive controller for nonlinear systems. Automatica 35:1809–1817 MathSciNetzbMATHGoogle Scholar
  182. 182.
    Tee KP, Ge SS (2006) Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans Control Syst Technol 14(4):750–756 Google Scholar
  183. 183.
    Chen M, Ge SS, Ren B (2011) Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3):452–465 MathSciNetzbMATHGoogle Scholar
  184. 184.
    Ren B, Ge SS, Tee KP, Lee TH (2010) Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans Neural Netw 21(8):1339–1345 Google Scholar
  185. 185.
    Wang M, Liu X, Shi P (2011) Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans Syst Man Cybern, Part B, Cybern 41(6):1681 Google Scholar
  186. 186.
    Wang C, Hill D (2006) Learning from neural control. IEEE Trans Neural Netw 17(1):130–146 Google Scholar
  187. 187.
    Ge SS, Wang C (2002) Direct adaptive nn control of a class of nonlinear systems. IEEE Trans Neural Netw 13(1):214–221 MathSciNetGoogle Scholar
  188. 188.
    Ge SS, Wang C (2004) Adaptive neural control of uncertain mimo nonlinear systems. IEEE Trans Neural Netw 15(3):674–692 Google Scholar
  189. 189.
    Zhang T, Ge SS (2007) Adaptive neural control of mimo nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6):1021–1033 MathSciNetzbMATHGoogle Scholar
  190. 190.
    Yang C, Ge SS, Xiang C, Chai T, Lee TH (2008) Output feedback nn control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):1873–1886 Google Scholar
  191. 191.
    Li Y, Qiang S, Zhuang X, Kaynak O (2004) Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 15(3):693–701 Google Scholar
  192. 192.
    Kayacan E, Cigdem O, Kaynak O (2012) Sliding mode control approach for online learning as applied to type-2 fuzzy neural networks and its experimental evaluation. IEEE Trans Ind Electron 59(9):3510–3520 Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Wei He
    • 1
  • Shuzhi Sam Ge
    • 2
  • Bernard Voon Ee How
    • 3
  • Yoo Sang Choo
    • 4
  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Dept of Electr. & Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Centre for Offshore Research & Engin.National University of SingaporeSingaporeSingapore
  4. 4.Dept of Civil & Environmental Engin.National University of SingaporeSingaporeSingapore

Personalised recommendations