Skip to main content

Effects of Biodiesel Usage on Engine Performance, Economy, Tribology, and Ecology

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 12))

Abstract

Biodiesel usage influences directly the injection and combustion processes and consequently also the engine performance, ecology, and economy characteristics. This influence is determined by the chemical and physical properties of biodiesel and depends on many parameters related to the engine, operating conditions, and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal, D., Sinha, S., & Agarwal, A. K. (2006). Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renewable Energy, 31, 2356–2369.

    Article  Google Scholar 

  • Armas, O., Hernández, J. J., & Cárdenas, M. D. (2006). Reduction of diesel smoke opacity from vegetable oil methyl esters during transient operation. Fuel, 85, 2427–2438.

    Article  Google Scholar 

  • Aydin, H., & Bayindir, H. (2010). Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renewable Energy, 35, 588–592.

    Article  Google Scholar 

  • Baiju, B., Naik, M. K., & Das, L. M. (2009). A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil. Renewable Energy, 34, 1616–1621.

    Article  Google Scholar 

  • Banapurmath, N. R., Tewari, P. G., & Hosmath, R. S. (2009). Effect of biodiesel derived from Honge oil and its blends with diesel when directly injected at different injection pressures and injection timings in single-cylinder water-cooled compression ignition engine. Proceedings of the Institution of Mechanical Engineers Part A, Journal of Power and Energy, 223, 31–40.

    Article  Google Scholar 

  • Banapurmath, N. R., Tewaria, P. G., & Hosmath, R. S. (2008). Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renewable Energy, 33, 1982–1988.

    Article  Google Scholar 

  • Bhale, P. V., Deshpande, N. V., & Thombre, S. B. (2009). Improving the low temperature properties of biodiesel fuel. Renewable Energy, 34, 794–800.

    Article  Google Scholar 

  • Buyukkaya, E. (2010). Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 89, 3099–3105.

    Article  Google Scholar 

  • Canakci, M. (2005). Performance and emissions characteristics of biodiesel from soybean Oil. Proceedings of the IMechE, Part D: Journal of Automobile Engineering, 219, 915–922.

    Article  Google Scholar 

  • Canakci, M. (2007). Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology, 98, 1167–1175.

    Article  Google Scholar 

  • Canakci, M., & Van Gerpen, J. H. (2003). Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transactions of the American Society of Agricultural Engineers, 46, 937–944.

    Google Scholar 

  • Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., & Tonon, S. (2004). Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy, 29, 2195–2211.

    Article  Google Scholar 

  • Cecrle, E., Depcik, C., Duncan, E., Guo, J., Mangus, M., Peltier, E., Stagg-Williams, S., & Zhong, Y. (2012). Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy & Fuels, 26, 2331–2341.

    Article  Google Scholar 

  • Cheung, C. S., Zhu, L., & Huang, Z. (2009). Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment, 43, 4865–4872.

    Article  Google Scholar 

  • Choi, S.-H., & Oh, Y. (2006). The emission effects by the use of biodiesel fuel. International Journal of Modern Physics B, 20, 4481–4486.

    Article  Google Scholar 

  • Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion & Management, 47, 2271–2282.

    Article  Google Scholar 

  • Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.

    Article  Google Scholar 

  • Deshmukh, S. J., & Bhuyar, L. B. (2009). Transesterified Hingan (Balanites) oil as a fuel for compression ignition engines. Biomass & Bioenergy, 33, 108–112.

    Article  Google Scholar 

  • Dorado, M. P., Ballesteros, E., Arnal, J. M., Gomez, J., & Lopez, F. J. (2003). Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel, 82, 1311–1315.

    Article  Google Scholar 

  • Fontaras, G., Karavalakis, G., Kousoulidou, M., Tzamkiozis, T., Ntziachristos, L., Bakeas, E., et al. (2009). Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel, 88, 1608–1617.

    Article  Google Scholar 

  • Giakoumis, E. G. (2012). A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles. Applied Energy, 98, 273–291.

    Article  Google Scholar 

  • Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., & Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science, 38, 691–715.

    Article  Google Scholar 

  • Giannelos, P. N., Sxizas, S., Lois, E., Zannikos, F., & Anastopoulos, G. (2005). Physical, chemical and fuel related properties of tomato seed oil for evaluating its direct use in diesel engines. Industrial Crops and Products, 22, 193–199.

    Article  Google Scholar 

  • Godiganur, S., Murthy, C. H. S., & Reddy, R. P. (2009). 6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends. Renewable Energy, 34, 2172–2177.

    Article  Google Scholar 

  • Godiganur, S., Murthy, C. H. S., & Reddy, R. P. (2010). Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters. Renewable Energy, 35, 355–359.

    Article  Google Scholar 

  • Gumus, M., & Kasifoglu, S. (2010). Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass & Bioenergy, 34, 134–139.

    Article  Google Scholar 

  • Haşimoğlu, C., Ciniviz, M., Özsert, İ., İçingürm, Y., Parlak, A., & Salman, M. S. (2008). Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renewable Energy, 33, 1709–1715.

    Article  Google Scholar 

  • Hazar, H. (2009). Effects of biodiesel on a low heat loss diesel engine. Renewable Energy, 34, 1533–1537.

    Article  Google Scholar 

  • Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., et al. (2003). An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass & Bioenergy, 24, 141–149.

    Article  Google Scholar 

  • Kaplan, C., Arslan, R., & Sürmen, A. (2006). Performance characteristics of sunflower methyl esters as biodiesel. Energy Sources Part A, 28, 751–755.

    Article  Google Scholar 

  • Karabektas, M. (2009). The effects of turbocharger on the performance and exhaust emissions of a diesel engine fuelled with biodiesel. Renewable Energy, 34, 989–993.

    Article  Google Scholar 

  • Karavalakis, G., Stournas, S., & Bakeas, E. (2009). Light vehicle regulated and unregulated emissions from different biodiesels. Science of The Total Environment, 407, 3338–3346.

    Article  Google Scholar 

  • Kegl, B. (2006). Experimental investigation of optimal timing of the diesel engine injection pump using biodiesel fuel. Energy & Fuels, 20, 1460–1470.

    Article  Google Scholar 

  • Kegl, B. (2007). NOx and particulate matter (PM) emissions reduction potential by biodiesel usage. Energy & Fuels, 21, 3310–3316.

    Article  Google Scholar 

  • Kegl, B. (2008). Effects of biodiesel on emissions of a bus diesel engine. Bioresource Technology, 99, 863–873.

    Article  Google Scholar 

  • Kegl, B. (2011). Influence of biodiesel on engine combustion and emission characteristics. Applied Energy, 88, 1803–1812.

    Article  Google Scholar 

  • Keskin, A., Gürü, M., & Altıparmak, D. (2008). Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresource Technology, 99, 6434–6438.

    Article  Google Scholar 

  • Kidoguchi, Y., Yang, C., Kato, R., & Miwa, K. (2000). Effects of fuel cetane number and aromatics on combustion process and emissions of a direct injection diesel engine. J SAE Review, 21, 469–475.

    Article  Google Scholar 

  • Koçak, M. S., Ileri, E., & Utlu, Z. (2007). Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy & Fuel, 21, 3622–3626.

    Article  Google Scholar 

  • Kousoulidou, M., Ntziachristos, L., Fontaras, G., Martini, G., Dilara, P., & Samaras, Z. (2012). Impact of biodiesel application at various blending ratios on passenger cars of different fueling technologies. Fuel, 98, 88–94.

    Article  Google Scholar 

  • Labeckas, G., & Slavinskas, S. (2006). The effect of rapeseed oil methyl ester on direct injection diesel engine performance and exhaust emissions. Energy Conversion and Management, 47, 1954–1967.

    Article  Google Scholar 

  • Lapuerta, M., Armas, O., & Rodrígues-Fernández, J. (2008a). Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 34, 198–223.

    Article  Google Scholar 

  • Lapuerta, M., Herreros, J. M., Lyons, L. L., García-Contreras, R., & Brice, Y. (2008b). Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 87, 3161–3169.

    Article  Google Scholar 

  • Leung, D. Y. C., Luo, Y., & Chan, T. L. (2006). Optimization of exhaust emissions of a diesel engine fuelled with biodiesel. Energy & Fuels, 20, 1015–1023.

    Article  Google Scholar 

  • Lin, B. F., Huang, J. H., & Huang, D. Y. (2009). Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88, 1779–1785.

    Article  Google Scholar 

  • Lin, C. Y., & Li, R. J. (2009). Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology, 90, 883–888.

    Article  Google Scholar 

  • Lin, C. Y., & Lin, H. A. (2007). Engine performance and emission characteristics of a three phase emulsion of biodiesel produced by peroxidation. Fuel Processing Technology, 88, 35–41.

    Article  Google Scholar 

  • Liu, Y. Y., Lin, T. C., Wang, Y. J., & Ho, W. L. (2009). Carbonyl compounds and toxicity assessments of emissions from a diesel engine running on biodiesels. Journal of The Air & Waste Management Association, 59, 163–171.

    Article  Google Scholar 

  • Mahanta, P., Mishra, S. C., & Kushwah, Y. S. (2006). An experimental study of Pongamia pinnata L. oil as a diesel substitute. Proceedings of the Institution of Mechanical Engineers Part A- Journal of Power and Energy, 220, 803–808.

    Article  Google Scholar 

  • McCormick, R.L., Tennant, C.J., Hayes, R.R., Black, S., Ireland, J., McDaniel, T., Williams, A., Frailey, M., Sharp, C.A. (2005). Regulated emission from biodiesel tested in heavy-duty engines. SAE Paper, 2005-01-2200.

    Google Scholar 

  • Meng, X., Chen, G., & Wang, Y. (2008). Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Processing Technology, 89, 851–857.

    Article  Google Scholar 

  • Murillo, S., Mıguez, J. L., Porteiro, J., Granada, E., & Moran, J. C. (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86, 1765–1771.

    Article  Google Scholar 

  • Nabi, M. N., Akhter, M. S., & Shahadat, M. M. Z. (2006). Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresource Technology, 97, 372–378.

    Article  Google Scholar 

  • Nabi, M. N., Najmul Hoque, S. M., & Akhter, M. S. (2009). Karanja (Pongamia pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Processing Technology, 90, 1080–1086.

    Article  Google Scholar 

  • Oğuz, H., Öǧüt, H., & Eryilmaz, T. (2007). Investigation of biodiesel production, quality and performance in Turkey. Energy Source Part A, 29, 1529–35.

    Article  Google Scholar 

  • Ozsezen, A. N., Canakci, M., & Sayin, C. (2008). Effect of biodiesel from used frying palm oil on the performance, injection, and combustion characteristics of an indirect injection diesel engine. Energy & Fuels, 22, 1297–1305.

    Article  Google Scholar 

  • Ozsezen, A. N., Canakci, M., Turkcan, A., & Sayin, C. (2009). Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel, 88, 629–636.

    Article  Google Scholar 

  • Pandey, R. K., Rehman, A., & Sarviya, R. M. (2012). Impact of alternative fuel properties on fuel spray behavior and atomization. Renewable and Sustainable Energy Reviews, 16, 1762–1778.

    Article  Google Scholar 

  • Pehan, S., Svoljšak-Jerman, M., Kegl, M., & Kegl, B. (2009). Biodiesel influence on tribology characteristics of a diesel engines. Fuel, 88, 970–979.

    Article  Google Scholar 

  • Puhan, S., Vedaraman, N., Ram, B. V. B., Sankarnarayanan, G., & Jeychandran, K. (2005a). Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characterstics. Biomass & Bioenergy, 28, 87–93.

    Article  Google Scholar 

  • Puhan, S., Vedaraman, N., Sankaranarayanan, G., & Bharat Ram, B. V. (2005b). Performance and emission study of Mahua oil (Madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine. Renewable Energy, 30, 1269–78.

    Article  Google Scholar 

  • Qi, D. H., Chen, H., Geng, L. M., & Bian, Y. Z. H. (2010). Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Conversion and Management, 51, 2985–2992.

    Article  Google Scholar 

  • Qi, D. H., Geng, L. M., Chen, H., Bian, Y. Z. H., Liu, J., & Ren, X. C. H. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34, 2706–2713.

    Article  Google Scholar 

  • Raheman, H., & Ghadge, S. V. (2007). Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel, 86, 2568–2573.

    Article  Google Scholar 

  • Raheman, H., & Phadatare, A. G. (2004). Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass and Bioenergy, 27, 393–397.

    Article  Google Scholar 

  • Ramadhas, A. S., Muraleedharan, C., & Jayaraj, S. (2005). Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renewable Energy, 30, 1789–1800.

    Article  Google Scholar 

  • Reyes, J. F., & Sepúlveda, M. A. (2006). PM-10 emissions and power of a diesel engine fueled with crude and refined biodiesel from salmon oil. Fuel, 85, 1714–1719.

    Article  Google Scholar 

  • Sahoo, P. K., Das, L. M., Babu, M. K. G., Arora, P., Singh, V. P., Kumar, N. R., et al. (2009). Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel, 88, 1698–1707.

    Article  Google Scholar 

  • Sahoo, P. K., Das, L. M., Babu, M. K. G., & Naik, S. N. (2007). Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86, 448–454.

    Article  Google Scholar 

  • Sayin, C., & Gumus, M. (2011). Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Applied Thermal Engineering, 31, 3182–3188.

    Article  Google Scholar 

  • Sharma, D., Soni, S. L., & Mathur, J. (2009). Emission reduction in a direct injection diesel engine fueled by neem-diesel blend. Energy Sources Part A, 31, 500–508.

    Article  Google Scholar 

  • Song, J. T., & Zhang, C. H. (2008). An experimental study on the performance and exhaust emissions of a diesel engine fuelled with soybean oil methyl ester. Proceedings of the IMechE, Part D: Journal of Automobile Engineering, 222, 2487–96.

    Article  Google Scholar 

  • Tsolakis, A., Megaritis, A., Wyszynski, M. L., & Theinnoi, K. (2007). Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy, 32, 2072–2080.

    Article  Google Scholar 

  • Ulusoy, Y., Arslan, R., & Kaplan, C. (2009). Emission characteristics of sunflower oil methyl ester. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 31, 906–910.

    Article  Google Scholar 

  • Usta, N. (2005). Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass & Bioenergy, 28, 77–86.

    Article  Google Scholar 

  • Usta, N., Öztürk, E., Can, Ö., Conkur, E. S., Nas, S., Con, A. H., et al. (2005). Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a diesel engine. Energy Conversion and Management, 46, 741–755.

    Article  Google Scholar 

  • Utlu, Z., & Koçak, M. S. (2008). The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renewable Energy, 33, 1936–1941.

    Article  Google Scholar 

  • Wu, F., Wang, J., Chen, W., & Shuai, S. (2009). A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmospheric Environment, 43, 1481–1485.

    Article  Google Scholar 

  • Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews, 15, 1098–1116.

    Article  Google Scholar 

  • Zheng, M., Mulenga, M. C., Reader, G. T., Wang, M., Ting, D. S.-K., & Tjong, J. (2008). Biodiesel engine performance and emissions in low temperature combustion. Fuel, 87, 714–722.

    Article  Google Scholar 

  • Zhu, L., Zhang, W., Liu, W., & Huang, Z. (2010). Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends. Science of the Total Environment, 408, 1050–1058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kegl, B., Kegl, M., Pehan, S. (2013). Effects of Biodiesel Usage on Engine Performance, Economy, Tribology, and Ecology. In: Green Diesel Engines. Lecture Notes in Energy, vol 12. Springer, London. https://doi.org/10.1007/978-1-4471-5325-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5325-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5324-5

  • Online ISBN: 978-1-4471-5325-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics