Skip to main content

Biodiesel as Diesel Engine Fuel

  • Chapter
  • First Online:
Green Diesel Engines

Part of the book series: Lecture Notes in Energy ((LNEN,volume 12))

Abstract

In recent years, the interest to use biodiesel as a substitute for mineral diesel has been increasing steadily. Biodiesel is a renewable fuel, consisting of various fatty acid methyl esters with the exact composition depending on the feedstock. This is a distinctly different composition than the hydrocarbon content of mineral diesel. In spite of that, biodiesel has many properties very close to those of mineral diesel. Consequently, the required biodiesel-related modifications of the diesel engine are typically rather minor. On the other hand, because of its different chemical character, biodiesel has several properties, which differ from those of mineral diesel just enough to offer an opportunity to reduce harmful emissions without worsening other economy and engine performances. It should be noted, however, that biodiesel properties may depend heavily on its raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, A. K. (2007). Biofuels (alcohols and biodiesels) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33, 233–271.

    Article  Google Scholar 

  • Agarwal, A. K., & Chaudhury, V. H. (2012). Spray characteristics of biodiesel/blends in a high pressure constant volume spray chamber. Experimental Thermal and Fluid Science, 42, 212–218.

    Article  Google Scholar 

  • Allen, C. A. W., Watts, R. G., Ackman, R. G., & Pegg, M. J. (1999). Predicting the viscosity of biodiesel fuel from their fatty acid ester composition. Fuel, 78, 1319–1326.

    Article  Google Scholar 

  • Alptekin, E., & Canakci, M. (2009). Characterization of the key fuel properties of methyl ester-diesel fuel blends. Fuel, 88, 75–80.

    Article  Google Scholar 

  • Altiparmak, D., Keskin, A., Koca, A., & Gürü, M. (2007). Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresource Technology, 98, 241–246.

    Article  Google Scholar 

  • Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88, 3402–3410.

    Article  Google Scholar 

  • Anastopoulus, G., Lois, E., Karonis, D., Kallingeros, S., & Zannikos, F. (2005). Impact of oxygen and nitrogen compounds on the lubrication properties of low sulfur diesel fuels. Energy, 30, 415–426.

    Article  Google Scholar 

  • Arkoudeas, P., Kallingeros, S., Zannikos, F., Anastopoulos, G., Karonis, D., Korres, D., & Lois, E. (2003). Study of using JP-8 aviation fuel and biodiesel in CI engines. Energy Conversion & Management, 44, 1013–1025.

    Article  Google Scholar 

  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel engine application: A review. Renewable and Sustainable Energy Reviews, 14, 1999–2008.

    Article  Google Scholar 

  • Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49, 2727–2741.

    Article  Google Scholar 

  • Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87, 1815–1835.

    Article  Google Scholar 

  • Basha, S. A., Gopal, K. R., & Jebaraj, S. (2009). A review on biodiesel production, combustion, emission and performance. Renewable and Sustainable Energy Reviews, 13, 1628–1634.

    Article  Google Scholar 

  • Bhale, P. V., Deshpande, N. V., & Thombre, S. B. (2009). Improving the low temperature properties of biodiesel fuel. Renewable Energy, 34, 794–800.

    Article  Google Scholar 

  • Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews, 12, 542–552.

    Article  Google Scholar 

  • Cecrle, E., Depcik, C., Duncan, E., Guo, J., Mangus, M., Peltier, E., Stagg-Williams, S., & Zhong, Y. (2010). Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy & Fuels, 26, 2331–2341.

    Article  Google Scholar 

  • Çetinkaya, M., Ulusoy, Y., Tekìn, Y., & Karaosmanoǧlu, F. (2005). Engine and winter road test performances of used cooking oil originated biodiesel. Energy Conversion and Management, 46, 1279–1291.

    Article  Google Scholar 

  • Chen, H., & Chen, G. Q. (2011). Energy cost of rapeseed-based biodiesel as alternative energy in China. Renewable Energy, 36, 1374–1378.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  • Conceição, M. M., Candeia, R. A., Dantas, H. J., Soledade, L. E. B., Fernandes, J. V. J., & Souza, A. G. (2005). Rhelogical behavior of castor oil biodiesel. Energy & Fuels, 19, 2185–2188.

    Article  Google Scholar 

  • Conceição, M. M., Fernandes, J. V. J., Araújo, A. S., Farias, M. F., Santos, I. M. G., & Souza, A. G. (2007). Thermal and oxidative degradation of castor oil biodiesel. Energy & Fuels, 21, 1522–1527.

    Article  Google Scholar 

  • Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion & Management, 47, 2271–2282.

    Article  Google Scholar 

  • Demirbas, A. (2008a). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–2116.

    Article  Google Scholar 

  • Demirbas, A. (2008b). Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel, 87, 1743–1748.

    Article  Google Scholar 

  • Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.

    Article  Google Scholar 

  • Echim, C., Maes, J., & Greyt, W. D. (2012). Improvement of cold filter plugging point of biodiesel from alternative feedstocks. Fuel, 93, 642–648.

    Article  Google Scholar 

  • Gao, Y., Deng, J., Li, C., Dang, F., Liao, Z., Wu, Z., & Li, L. (2009). Experimental study of the spray characteristics of biodiesel based on inedible oil. Biotechnology Advances, 27, 616–624.

    Article  Google Scholar 

  • Giannelos, P. N., Sxizas, S., Lois, E., Zannikos, F., & Anastopoulus, G. (2005). Physical, chemical and fuel related properties of tomato seed oil for evaluating its direct use in diesel engines. Industrial Crops and Products, 22, 193–199.

    Article  Google Scholar 

  • Gomez, M. E. G., Howard-Hildige, R., Leahy, J. J., & Rice, B. (2002). Winterization of waste cooking oil methyl ester to improve cold temperature fuel properties. Fuel, 81, 33–39.

    Article  Google Scholar 

  • Goodrum, J. W. (2002). Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass & Bioenergy, 22, 205–211.

    Article  Google Scholar 

  • Goodrum, J. W., & Eitchman, M. A. (1996). Physical properties of low molecular weight triglycerides for the development of bio-diesel fuels model. Bioresource Technology, 56, 55–60.

    Article  Google Scholar 

  • Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169.

    Article  Google Scholar 

  • Hu, J., Du, Z., Li, C., & Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84, 1601–1601.

    Google Scholar 

  • Jain, S., & Sharma, M. P. (2010). Biodiesel production from Jatropha curcas oil. Renewable and Sustainable Energy Reviews, 14, 3140–3147.

    Article  Google Scholar 

  • Jha, S. K., Fernando, S., & To, S. D. F. (2008). Flame temperature analysis of biodiesel blends and components. Fuel, 87, 1982–1988.

    Article  Google Scholar 

  • Joshi, R. M., & Pegg, M. J. (2007). Flow properties of biodiesel fuel blends at low temperatures. Fuel, 86, 143–151.

    Article  Google Scholar 

  • Kalam, M. A., & Masjuki, H. H. (2002). Biodiesel from palm oil—an analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479.

    Article  Google Scholar 

  • Kannan, G. R., Karvembu, R., & Anand, R. (2011). Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied Energy, 88(11), 3694–3703.

    Article  Google Scholar 

  • Kegl, B. (2006). Numerical analysis of injection characteristics using biodiesel fuel. Fuel, 85, 2377–2387.

    Article  Google Scholar 

  • Kegl, B. (2008). Biodiesel usage at low temperature. Fuel, 87, 1306–1317.

    Article  Google Scholar 

  • Kerschbaum, S., & Rinke, G. (2004). Measurement of the temperature dependent viscosity of biodiesel fuels. Fuel, 83, 287–291.

    Article  Google Scholar 

  • Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059–1070.

    Article  Google Scholar 

  • Knothe, G., Dunn, R. O., Shockley, M. W., & Bagby, M. O. (2000). Synthesis and characterization of some long-chain diesters with branched or bulky moieties. Journal of the American Oil Chemists’ Society, 77(8), 865–871.

    Article  Google Scholar 

  • Knothe, G., & Steidley, R. (2005a). Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy and Fuels, 19, 1192–1200.

    Article  Google Scholar 

  • Knothe, G., & Steidley, K. R. (2005b). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059–1065.

    Article  Google Scholar 

  • Koçak, M. S., Ileri, E., & Utlu, Z. (2007). Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy & Fuel, 21, 3622–3626.

    Article  Google Scholar 

  • Krisnangkura, K., Yimsuwan, T., & Pairintra, R. (2006). An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel, 85, 107–113.

    Article  Google Scholar 

  • Lapinskiene, A., Martinkus, P., & Rebždaite, V. (2006). Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environmental Pollution, 142, 432–437.

    Article  Google Scholar 

  • Lapuerta, M., Rodríguez-Fernández, J., & de Mora, E. F. (2009). Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 37, 4337–4344.

    Article  Google Scholar 

  • Lebedevas, S., Vaicekauskas, A., Lebedeva, G., Makareviciene, V., Janulis, P., & Kazancev, K. (2006). Use of waste fats of anima and vegetable origin for the production of biodiesel fuel: Quality, motor properties, and emissions of harmful components. Energy & Fuels, 20, 2274–2280.

    Article  Google Scholar 

  • Lin, L., Cunshan, Z., Vittayapadung, S., Xianquian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1021–1031.

    Google Scholar 

  • Lira, L. F. B., Vasconcelos, F. V. C., Pereira, C. F., Paim, A. P. S., Stragevitz, L., & Pimentel, M. F. (2010). Prediction of properties of diesel/biodiesel blends by infrared spectroscopy and multivariate calibration. Fuel, 89, 405–409.

    Article  Google Scholar 

  • Ming, T. C., Ramli, N., Lye, O. T., Said, M., & Kasim, Z. (2005). Strategies for decreasing the pour point and cloud point of palm oil products. European Journal of Lipid Science and Technology, 107, 505–512.

    Article  Google Scholar 

  • Misra, R. D., & Murthy, M. S. (2011). Jatropa—The future fuel of India. Renewable and Sustainable Energy Reviews, 15, 1350–1358.

    Article  Google Scholar 

  • Murugesan, A., Umarani, C., Subramanian, R., & Nedunchezhian, N. (2009). Biodiesel as an alternative fuel for diesel engines—A review. Renewable and Sustainable Energy Reviews, 13, 653–662.

    Article  Google Scholar 

  • Oliveira, L. S., Franca, A. S., Camaegos, R. R. S., & Ferraz, V. P. (2008). Coffee oil as a potential feedstock for biodiesel production. Bioresource Technology, 99, 3244–3250.

    Article  Google Scholar 

  • Park, J. Y., Kim, D. K., Lee, J. P., Park, S. C., Kim, Y. J., & Lee, J. S. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology, 99, 1196–1203.

    Article  Google Scholar 

  • Peng, C. Y., Lan, C. H., & Dai, Y. T. (2006). Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel. Chemosphere, 65, 2054–2062.

    Article  Google Scholar 

  • Peterson, C. L., & Hustrulid, T. (1998). Carbon cycle for rapeseed oil biodiesel fuels. Biomass and Bioenergy, 14, 91–101.

    Article  Google Scholar 

  • Ramadhas, A. S., Jayaraj, S., Muraleedharan, C., & Padmakumari, K. (2006). Artifical neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy, 31, 2524–2533.

    Article  Google Scholar 

  • Russo, D., Dassisti, M., Lawlor, V., & Olabi, A. G. (2012). State of the art of biofuels from pure plant oil. Renewable and Sustainable Energy Reviews, 16, 4056–4070.

    Article  Google Scholar 

  • Ryu, K. (2010). The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology, 101, 578–582.

    Article  Google Scholar 

  • Schleicher, T., Werkmeister, R., Russ, W., & Meyer-Pittroff, R. (2009). Microbiological stability of biodiesel-diesel-mixtures. Bioresource Technology, 100, 724–730.

    Article  Google Scholar 

  • Senzikiene, E., Makareviciene, V., & Janulis, P. (2006). Influence of fuel oxygen content on diesel engine exhaust emissions. Renewable Energy, 31, 2505–2512.

    Article  Google Scholar 

  • Sharma, Y. C., Singh, B., & Upadhyay, S. N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87, 2355–2373.

    Article  Google Scholar 

  • Shumaker, J. L., Crofcheck, C., Tackett, S. A., et al. (2008). Biodiesel synthesis using calcined layered double hydroxide catalyst. Applied Catalyst B: Environmental, 82, 120–130.

    Article  Google Scholar 

  • Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialization of algal biofuels. Bioresource Technology, 102, 26–34.

    Article  Google Scholar 

  • Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555.

    Article  Google Scholar 

  • Singh, S. P., & Singh, D. (2010). Biodiesel production thorough the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14, 200–216.

    Article  Google Scholar 

  • Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49, 1248–1257.

    Article  Google Scholar 

  • Smith, P. C., Ngothai, Y., Nguyen, Q. D., & O’Neill, B. K. (2010). Improving the low-temperature properties of biodiesel: Methods and consequences. Renewable Energy, 35, 1145–1151.

    Article  Google Scholar 

  • Tang, H., Salley, S. O., & Ng, K. Y. S. (2008). Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 87, 3006–3017.

    Article  Google Scholar 

  • Tate, R. E., Watts, K. C., Allen, C. A. W., & Wilkie, K. I. (2006a). The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel, 85, 1010–1015.

    Article  Google Scholar 

  • Tate, R. E., Watts, K. C., Allen, C. A. W., & Wilkie, K. I. (2006b). The densities of three biodiesel fuels at temperatures up to 300 °C. Fuel, 85, 1004–1009.

    Article  Google Scholar 

  • Torres-Jimenez, E., SvoljÅ¡ak Jerman, M., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2011). Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 90, 795–802.

    Article  Google Scholar 

  • Torres-Jimenez, E., SvoljÅ¡ak-Jerman, M., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2010). Physical and chemical properties of ethanol–biodiesel blends for diesel engines. Energy & Fuels, 24, 2002–2009.

    Article  Google Scholar 

  • Vijayaraghavan, K., & Hemanathan, K. (2009). Biodiesel production from freshwater algae. Energy & Fuels, 23, 5448–5453.

    Article  Google Scholar 

  • Wain, K. S., Perez, J. M., Chapman, E., & Boehman, A. L. (2005). Alternative and low sulfur fuel options: boundary lubrication performance and potential problems. Tribology International, 38, 313–319.

    Article  Google Scholar 

  • Wang, W., Mab, S., Zhao, M., Kuang, L., Nie, J., & Riley, W. W. (2011). Improving the cold flow properties of biodiesel from waste cooking oil by surfactants and detergent fractionation. Fuel, 90(3), 1036–1040.

    Article  Google Scholar 

  • West, A. H., Posarac, D., & Ellis, N. (2008). Assessment of four biodiesel production using HYSYS. Plant, Bioresource Technology, 99, 6587–6601.

    Article  Google Scholar 

  • Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews, 15, 1098–1116.

    Article  Google Scholar 

  • Yoon, S. H., Suh, H. K., & Lee, C. S. (2009). Effect of spray and EGR rate on the combustion and emission characteristics of biodiesel fuel in a compression ignition engine. Energy & Fuels, 23, 1486–1493.

    Article  Google Scholar 

  • Yuan, W., Hansen, A. C., & Zhang, Q. (2005). Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel, 84, 943–950.

    Article  Google Scholar 

  • Yuste, A. J., & Dorado, M. P. (2006). A neural network approach to simulate biodiesel production from waste olive oil. Energy & Fuels, 20, 399–402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kegl, B., Kegl, M., Pehan, S. (2013). Biodiesel as Diesel Engine Fuel. In: Green Diesel Engines. Lecture Notes in Energy, vol 12. Springer, London. https://doi.org/10.1007/978-1-4471-5325-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5325-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5324-5

  • Online ISBN: 978-1-4471-5325-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics