Skip to main content

Channelopathies and Heart Disease

  • Chapter
  • First Online:
Cardiac Arrhythmias

Abstract

Channelopathies represent diseases caused by mutations in the genes encoding ion channels or associated proteins. With the advent of novel electrophysiology and molecular biology techniques, a wide variety of ion channels have been identified in different regions of the working myocardium or conduction system, and their biophysical and pharmacological properties, as well as involvement in different pathophysiology processes, are thoroughly characterized. This wealth of knowledge offers a better understanding of the intricate chemical and electrical events underlying a large class of rare heart diseases, most of them associated with arrhythmias, and also reveals novel mechanisms in the most frequent cardiovascular diseases and their complications. Within the present chapter we tackled the challenging task of presenting a comprehensive review of this rapidly expanding domain, with the hope of rendering relevant information for specialists with an interest in this highly exciting field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong CM, Hille B. Voltage-gated ion channels and electrical excitability. Neuron. 1998;20(3):371–80.

    CAS  PubMed  Google Scholar 

  2. FitzHugh R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol. 1960;43:867–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Hall AE, Hutter OF, Noble D. Current–voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol. 1963;166:225–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hutter OF, Noble D. Rectifying properties of heart muscle. Nature. 1960;188:495.

    CAS  PubMed  Google Scholar 

  5. Weidmann S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951;115(2):227–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Deck KA, Trautwein W. Ionic currents in cardiac excitation. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;280:63–80.

    CAS  PubMed  Google Scholar 

  7. Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol. 1967;192(2):479–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Noble D, Tsien RW. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968;195(1):185–214.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Noble D,Tsien RW. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969;200(1):205–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. McAllister RE, Noble D, Tsien RW. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975;251(1):1–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968;195(2):451–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. DiFrancesco D, Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985;307(1133):353–98.

    CAS  PubMed  Google Scholar 

  13. DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981;314:359–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391(2):85–100.

    CAS  PubMed  Google Scholar 

  15. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260(5554):799–802.

    CAS  PubMed  Google Scholar 

  16. Amuzescu B, Mubagwa K. Cardiac ion channels and transporters. In: Georgescu A, Antohe F, editors. From vascular cell biology to cardiovascular medicine. Trivandrum: Transworld Research Network; 2011. p. 51–98.

    Google Scholar 

  17. Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2001. 452 p.

    Google Scholar 

  18. Roden DM, George Jr AL. Structure and function of cardiac sodium and potassium channels. Am J Physiol. 1997;273(2 Pt 2):H511–25.

    CAS  PubMed  Google Scholar 

  19. Abriel H, Kass RS. Regulation of the voltage-gated cardiac sodium channel Nav1.5 By interacting proteins. Trends Cardiovasc Med. 2005;15(1):35–40.

    CAS  PubMed  Google Scholar 

  20. Kontis KJ, Goldin AL. Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J Gen Physiol. 1997;110(4):403–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Stühmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989;339(6226):597–603.

    PubMed  Google Scholar 

  22. Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE. Solution structure of the sodium channel inactivation gate. Biochemistry. 1999;38(3):855–61.

    CAS  PubMed  Google Scholar 

  23. Cormier JW, Rivolta I, Tateyama M, Yang AS, Kass RS. Secondary structure of the human cardiac Na + channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem. 2002;277(11):9233–41. Epub 2001 Dec 10.

    CAS  PubMed  Google Scholar 

  24. Albrecht DE, Froehner SC. Syntrophins and dystrobrevins: defining the dystrophin scaffold at synapses. Neurosignals. 2002;11(3):123–9.

    CAS  PubMed  Google Scholar 

  25. Finsterer J, Stöllberger C. The heart in human dystrophinopathies. Cardiology. 2003;99(1):1–19.

    PubMed  Google Scholar 

  26. Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G, Ackerman MJ, Makielski JC. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci U S A. 2008;105(27):9355–60. Epub 2008 Jun 30.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Aarnoudse AJ, Newton-Cheh C, de Bakker PI, Straus SM, Kors JA, Hofman A, Uitterlinden AG, Witteman JC, Stricker BH. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007;116(1):10–6. Epub 2007 Jun 18.

    PubMed  Google Scholar 

  28. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, West K, Kashuk C, Akyol M, Perz S, Jalilzadeh S, Illig T, Gieger C, Guo CY, Larson MG, Wichmann HE, Marbán E, O’Donnell CJ, Hirschhorn JN, Kääb S, Spooner PM, Meitinger T, Chakravarti A. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644–51. Epub 2006 Apr 30.

    CAS  PubMed  Google Scholar 

  29. Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, Ackerman MJ. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4(2):161–6. Epub 2006 Dec 6.

    PubMed Central  PubMed  Google Scholar 

  30. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusié-Luna MT, Makielski JC, Ackerman MJ. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116(2):134–42. Epub 2007 Jun 25.

    PubMed Central  PubMed  Google Scholar 

  31. Tan HL, Kupershmidt S, Zhang R, Stepanovic S, Roden DM, Wilde AA, Anderson ME, Balser JR. A calcium sensor in the sodium channel modulates cardiac excitability. Nature. 2002;415(6870):442–7.

    CAS  PubMed  Google Scholar 

  32. Kim J, Ghosh S, Liu H, Tateyama M, Kass RS, Pitt GS. Calmodulin mediates Ca2+ sensitivity of sodium channels. J Biol Chem. 2004;279(43):45004–12. Epub 2004 Aug 16.

    CAS  PubMed  Google Scholar 

  33. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Brignole M, Giordano U, Giovannini T, Menozzi C, Bloise R, Crotti L, Terreni L, Schwartz PJ. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102(20):2509–15.

    CAS  PubMed  Google Scholar 

  34. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A. 2004;101(50):17533–8. Epub 2004 Dec 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    CAS  PubMed  Google Scholar 

  36. Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, Priori SG, Keating MT, Bennett V. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;101(24):9137–42. Epub 2004 Jun 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94.

    PubMed  Google Scholar 

  38. Lerche H, Jurkat-Rott K, Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet. 2001;106(2):146–59.

    CAS  PubMed  Google Scholar 

  39. Steinlein OK. Genes and mutations in idiopathic epilepsy. Am J Med Genet. 2001;106(2):139–45.

    CAS  PubMed  Google Scholar 

  40. Bennett PB, Yazawa K, Makita N, George Jr AL. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376(6542):683–5.

    CAS  PubMed  Google Scholar 

  41. Chandra R, Starmer CF, Grant AO. Multiple effects of KPQ deletion mutation on gating of human cardiac Na + channels expressed in mammalian cells. Am J Physiol. 1998;274(5 Pt 2):H1643–54.

    CAS  PubMed  Google Scholar 

  42. Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature. 1999;400(6744):566–9.

    CAS  PubMed  Google Scholar 

  43. Antzelevitch C, Yan G, Shimizu W, Burashnikov A. Electrical heterogeneity, the ECG, and cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Saunders; 2000. p. 222–38.

    Google Scholar 

  44. Carmeliet E, Fozzard HA, Hiraoka M, Janse MJ, Ogawa S, Roden DM, Rosen MR, Rudy Y, Schwartz PJ, Matteo PS, Antzelevitch C, Boyden PA, Catterall WA, Fishman GI, George AL, Izumo S, Jalife J, January CT, Kléber AG, Marbán E, Marks AR, Spooner PM, Waldo AL, Weiss JM, Zipes DLP. New approaches to antiarrhythmic therapy. Part I : emerging therapeutic applications of the cell biology of cardiac arrhythmias. Circulation. 2001;104(23):2865–73.

    Google Scholar 

  45. Clancy CE, Tateyama M, Liu H, Wehrens XH, Kass RS. Non-equilibrium gating in cardiac Na + channels: an original mechanism of arrhythmia. Circulation. 2003;107(17):2233–7. Epub 2003 Apr 14.

    CAS  PubMed  Google Scholar 

  46. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3: a marker for sudden death in patients without demonstrable structural heart disease. Circulation. 1998;97(5):457–60.

    CAS  PubMed  Google Scholar 

  47. An RH, Wang XL, Kerem B, Benhorin J, Medina A, Goldmit M, Kass RS. Novel LQT-3 mutation affects Na + channel activity through interactions between alpha- and beta1-subunits. Circ Res. 1998;83(2):141–6.

    CAS  PubMed  Google Scholar 

  48. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem. 2001;276(33):30623–30. Epub 2001 Jun 15.

    CAS  PubMed  Google Scholar 

  49. Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res. 2000;86(9):E91–7.

    CAS  PubMed  Google Scholar 

  50. Clancy CE, Rudy Y. Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation. 2002;105(10):1208–13.

    PubMed Central  PubMed  Google Scholar 

  51. Kyndt F, Probst V, Potet F, Demolombe S, Chevallier JC, Baro I, Moisan JP, Boisseau P, Schott JJ, Escande D, Le Marec H. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation. 2001;104(25):3081–6.

    CAS  PubMed  Google Scholar 

  52. Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest. 2002;110(8):1201–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu H, Tateyama M, Clancy CE, Abriel H, Kass RS. Channel openings are necessary but not sufficient for use-dependent block of cardiac Na(+) channels by flecainide: evidence from the analysis of disease-linked mutations. J Gen Physiol. 2002;120(1):39–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002;297(5585):1333–6.

    CAS  PubMed  Google Scholar 

  55. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, Brugada P. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101(5):510–5.

    CAS  PubMed  Google Scholar 

  56. Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000;102(9):945–7.

    CAS  PubMed  Google Scholar 

  57. Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS. Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation. 2000;102(8):921–5.

    CAS  PubMed  Google Scholar 

  58. Grant AO, Chandra R, Keller C, Carboni M, Starmer CF. Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys J. 2000;79(6):3019–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Viswanathan PC, Bezzina CR, George Jr AL, Roden DM, Wilde AA, Balser JR. Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation. 2001;104(10):1200–5.

    CAS  PubMed  Google Scholar 

  60. Nagatomo T, January CT, Makielski JC. Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I(C) antiarrhythmic flecainide. Mol Pharmacol. 2000;57(1):101–7.

    CAS  PubMed  Google Scholar 

  61. Abriel H, Cabo C, Wehrens XH, Rivolta I, Motoike HK, Memmi M, Napolitano C, Priori SG, Kass RS. Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel. Circ Res. 2001;88(7):740–5.

    CAS  PubMed  Google Scholar 

  62. Wang DW, Yazawa K, Makita N, George Jr AL, Bennett PB. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest. 1997;99(7):1714–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ahern CA, Zhang JF, Wookalis MJ, Horn R. Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase. Circ Res. 2005;96(9):991–8. Epub 2005 Apr 14.

    CAS  PubMed  Google Scholar 

  64. Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, Abriel H. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun. 2006;348(4):1455–62. Epub 2006 Aug 10.

    CAS  PubMed  Google Scholar 

  65. Liu H, Sun HY, Lau CP, Li GR. Regulation of voltage-gated cardiac sodium current by epidermal growth factor receptor kinase in guinea pig ventricular myocytes. J Mol Cell Cardiol. 2007;42(4):760–8. Epub 2006 Dec 22.

    CAS  PubMed  Google Scholar 

  66. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, Viswanathan PC, Pfahnl AE, Shang LL, Madhusudanan M, Baty CJ, Lagana S, Aleong R, Gutmann R, Ackerman MJ, McNamara DM, Weiss R, Dudley Jr SC. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na + current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8. Epub 2007 Oct 29.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83(1):117–61.

    CAS  PubMed  Google Scholar 

  68. Bean BP. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985;86(1):1–30.

    CAS  PubMed  Google Scholar 

  69. Nilius B, Hess P, Lansman JB, Tsien RW. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985;316(6027):443–6.

    CAS  PubMed  Google Scholar 

  70. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988;395:233–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Zhou Z, Lipsius SL. T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol. 1994;26(9):1211–9.

    CAS  PubMed  Google Scholar 

  72. Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2009;460(2):395–403.

    PubMed Central  PubMed  Google Scholar 

  73. Collin T, Wang JJ, Nargeot J, Schwartz A. Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res. 1993;72(6):1337–44.

    CAS  PubMed  Google Scholar 

  74. Brust PF, Simerson S, McCue AF, Deal CR, Schoonmaker S, Williams ME, Veliçelebi G, Johnson EC, Harpold MM, Ellis SB. Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly. Neuropharmacology. 1993;32(11):1089–102.

    CAS  PubMed  Google Scholar 

  75. Heinemann SH, Terlau H, Stühmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992;356(6368):441–3.

    CAS  PubMed  Google Scholar 

  76. Faber GM, Silva J, Livshitz L, Rudy Y. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J. 2007;92(5):1522–43. Epub 2006 Dec 8.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399(6732):159–62.

    PubMed  Google Scholar 

  78. Zühlke RD, Pitt GS, Tsien RW, Reuter H. Ca2 + −sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem. 2000;275(28):21121–9.

    PubMed  Google Scholar 

  79. Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci U S A. 2002;99(26):17185–90. Epub 2002 Dec 16.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Peterson BZ, DeMaria CD, Adelman JP, Yue DT. Calmodulin is the Ca2+ sensor for Ca2+ − dependent inactivation of L-type calcium channels. Neuron. 1999;22(3):549–58.

    CAS  PubMed  Google Scholar 

  81. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol. 1995;76(10):744–5.

    CAS  PubMed  Google Scholar 

  82. Reichenbach H, Meister EM, Theile H. The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax. 1992;60(2):54–6.

    CAS  PubMed  Google Scholar 

  83. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.

    CAS  PubMed  Google Scholar 

  84. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102(23):8089–96. discussion 8086–8. Epub 2005 Apr 29.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471(7337):230–4. Epub 2011 Feb 9.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros Jr EP, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9. Epub 2007 Jan 15.

    PubMed Central  PubMed  Google Scholar 

  87. Vassort G, Talavera K, Alvarez JL. Role of T-type Ca2+ channels in the heart. Cell Calcium. 2006;40(2):205–20.

    CAS  PubMed  Google Scholar 

  88. Niwa N, Yasui K, Opthof T, Takemura H, Shimizu A, Horiba M, Lee JK, Honjo H, Kamiya K, Kodama I. Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol. 2004;286(6):H2257–63. Epub 2004 Feb 26.

    CAS  PubMed  Google Scholar 

  89. Huang B, Qin D, El-Sherif N. Early down-regulation of K + channel genes and currents in the postinfarction heart. J Cardiovasc Electrophysiol. 2000;11(11):1252–61.

    CAS  PubMed  Google Scholar 

  90. Izumi T, Kihara Y, Sarai N, Yoneda T, Iwanaga Y, Inagaki K, Onozawa Y, Takenaka H, Kita T, Noma A. Reinduction of T-type calcium channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation. 2003;108(20):2530–5. Epub 2003 Oct 27.

    CAS  PubMed  Google Scholar 

  91. Martínez ML, Heredia MP, Delgado C. Expression of T-type Ca(2+) channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol. 1999;31(9):1617–25.

    PubMed  Google Scholar 

  92. Nuss HB, Houser SR. T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res. 1993;73(4):777–82.

    CAS  PubMed  Google Scholar 

  93. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81(4):512–25.

    CAS  PubMed  Google Scholar 

  94. Levine TB, Bernink PJ, Caspi A, Elkayam U, Geltman EM, Greenberg B, McKenna WJ, Ghali JK, Giles TD, Marmor A, Reisin LH, Ammon S, Lindberg E. Effect of mibefradil, a T-type calcium channel blocker, on morbidity and mortality in moderate to severe congestive heart failure: the MACH-1 study. Mortality Assessment in Congestive Heart Failure Trial. Circulation. 2000;101(7):758–64.

    CAS  PubMed  Google Scholar 

  95. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    CAS  PubMed  Google Scholar 

  96. Cittadini A, Monti MG, Isgaard J, Casaburi C, Strömer H, Di Gianni A, Serpico R, Saldamarco L, Vanasia M, Saccà L. Aldosterone receptor blockade improves left ventricular remodeling and increases ventricular fibrillation threshold in experimental heart failure. Cardiovasc Res. 2003;58(3):555–64.

    CAS  PubMed  Google Scholar 

  97. Noble D. Modelling the heart: insights, failures and progress. Bioessays. 2002;24(12):1155–63.

    PubMed  Google Scholar 

  98. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K + current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol. 1990;96(1):195–215.

    CAS  PubMed  Google Scholar 

  99. Sanguinetti MC, Jurkiewicz NK. Delayed rectifier outward K + current is composed of two currents in guinea pig atrial cells. Am J Physiol. 1991;260(2 Pt 2):H393–9.

    CAS  PubMed  Google Scholar 

  100. Busch AE, Malloy K, Groh WJ, Varnum MD, Adelman JP, Maylie J. The novel class III antiarrhythmics NE-10064 and NE-10133 inhibit IsK channels expressed in Xenopus oocytes and IKs in guinea pig cardiac myocytes. Biochem Biophys Res Commun. 1994;202(1):265–70.

    CAS  PubMed  Google Scholar 

  101. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K + current by almokalant in rabbit ventricular myocytes. Circ Res. 1993;73(5):857–68.

    CAS  PubMed  Google Scholar 

  102. Lerche C, Seebohm G, Wagner CI, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE. Molecular impact of MinK on the enantiospecific block of I(Ks) by chromanols. Br J Pharmacol. 2000;131(8):1503–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Anumonwo JM, Freeman LC, Kwok WM, Kass RS. Delayed rectification in single cells isolated from guinea pig sinoatrial node. Am J Physiol. 1992;262(3 Pt 2):H921–5.

    CAS  PubMed  Google Scholar 

  104. Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Circulation. 1990;82(1):289–93.

    CAS  PubMed  Google Scholar 

  105. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J Biol Chem. 2000;275(8):5997–6006.

    CAS  PubMed  Google Scholar 

  106. Nerbonne JM. Molecular basis of functional voltage-gated K + channel diversity in the mammalian myocardium. J Physiol. 2000;525(Pt 2):285–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Boyle WA, Nerbonne JM. A novel type of depolarization-activated K + current in isolated adult rat atrial myocytes. Am J Physiol. 1991;260(4 Pt 2):H1236–47.

    CAS  PubMed  Google Scholar 

  108. Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K + current similar to Kv1.5 cloned channel currents. Circ Res. 1993;73(6):1061–76.

    CAS  PubMed  Google Scholar 

  109. Backx PH, Marbán E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res. 1993;72(4):890–900.

    CAS  PubMed  Google Scholar 

  110. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995;76(3):351–65.

    CAS  PubMed  Google Scholar 

  111. Bryant SM, Wan X, Shipsey SJ, Hart G. Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res. 1998;40(2):322–31.

    CAS  PubMed  Google Scholar 

  112. Main MC, Bryant SM, Hart G. Regional differences in action potential characteristics and membrane currents of guinea-pig left ventricular myocytes. Exp Physiol. 1998;83(6):747–61.

    CAS  PubMed  Google Scholar 

  113. Näbauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93(1):168–77.

    PubMed  Google Scholar 

  114. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72(3):671–87.

    CAS  PubMed  Google Scholar 

  115. Clancy CE, Kass RS. Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na + and K + channels. Physiol Rev. 2005;85(1):33–47.

    CAS  PubMed  Google Scholar 

  116. Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295(5554):496–9.

    CAS  PubMed  Google Scholar 

  117. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102(10):1178–85.

    CAS  PubMed  Google Scholar 

  118. Bianchi L, Priori SG, Napolitano C, Surewicz KA, Dennis AT, Memmi M, Schwartz PJ, Brown AM. Mechanisms of I(Ks) suppression in LQT1 mutants. Am J Physiol Heart Circ Physiol. 2000;279(6):H3003–11.

    CAS  PubMed  Google Scholar 

  119. Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E, Bryskin R, Schwartz PJ, Brown AM. Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet. 1999;8(8):1499–507.

    CAS  PubMed  Google Scholar 

  120. Shalaby FY, Levesque PC, Yang WP, Little WA, Conder ML, Jenkins-West T, Blanar MA. Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome. Circulation. 1997;96(6):1733–6.

    CAS  PubMed  Google Scholar 

  121. Abbott GW, Goldstein SA. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J. 2002;16(3):390–400.

    CAS  PubMed  Google Scholar 

  122. Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A. 2003;100(4):2122–7. Epub 2003 Feb 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Chen Q, Zhang D, Gingell RL, Moss AJ, Napolitano C, Priori SG, Schwartz PJ, Kehoe E, Robinson JL, Schulze-Bahr E, Wang Q, Towbin JA. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation. 1999;99(10):1344–7.

    CAS  PubMed  Google Scholar 

  124. Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation. 1996;94(8):1996–2012.

    CAS  PubMed  Google Scholar 

  125. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. Pathophysiological mechanisms of dominant and recessive KVLQT1 K + channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet. 1997;6(11):1943–9.

    CAS  PubMed  Google Scholar 

  126. Donger C, Denjoy I, Berthet M, Neyroud N, Cruaud C, Bennaceur M, Chivoret G, Schwartz K, Coumel P, Guicheney P. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96(9):2778–81.

    CAS  PubMed  Google Scholar 

  127. Mohammad-Panah R, Demolombe S, Neyroud N, Guicheney P, Kyndt F, van den Hoff M, Baró I, Escande D. Mutations in a dominant-negative isoform correlate with phenotype in inherited cardiac arrhythmias. Am J Hum Genet. 1999;64(4):1015–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Chouabe C, Neyroud N, Richard P, Denjoy I, Hainque B, Romey G, Drici MD, Guicheney P, Barhanin J. Novel mutations in KvLQT1 that affect Iks activation through interactions with Isk. Cardiovasc Res. 2000;45(4):971–80.

    CAS  PubMed  Google Scholar 

  129. Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J. Properties of KvLQT1 K + channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 1997;16(17):5472–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17(3):338–40.

    CAS  PubMed  Google Scholar 

  131. Franqueza L, Lin M, Shen J, Splawski I, Keating MT, Sanguinetti MC. Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem. 1999;274(30):21063–70.

    CAS  PubMed  Google Scholar 

  132. Gibor G, Yakubovich D, Rosenhouse-Dantsker A, Peretz A, Schottelndreier H, Seebohm G, Dascal N, Logothetis DE, Paas Y, Attali B. An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys J. 2007;93(12):4159–72. Epub 2007 Aug 17.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.

    CAS  PubMed  Google Scholar 

  134. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54(1):59–68.

    CAS  PubMed  Google Scholar 

  135. Romano C, Gemme G, Pongiglione R. Rare cardiac arrythmias of the pediatric age. Ii. Syncopal attacks due to paroxysmal ventricular fibrillation. (Presentation of 1st case in Italian pediatric literature). Clin Pediatr (Bologna). 1963;45:656–83.

    CAS  Google Scholar 

  136. Hashiba K. Hereditary QT, prolongation syndrome in Japan: genetic analysis and pathological findings of the conducting system. Jpn Circ J. 1978;42(10):1133–50.

    CAS  PubMed  Google Scholar 

  137. Gamstorp I, Nilsen R, Westling H. Congenital cardiac arrhythmia. Lancet. 1964;2(7366):965.

    CAS  PubMed  Google Scholar 

  138. Vincent GM. The heart rate of Romano-Ward syndrome patients. Am Heart J. 1986;112(1):61–4.

    CAS  PubMed  Google Scholar 

  139. Göhl K, Feistel H, Weikl A, Bachmann K, Wolf F. Congenital myocardial sympathetic dysinnervation (CMSD)–a structural defect of idiopathic long QT syndrome. Pacing Clin Electrophysiol. 1991;14(10):1544–53.

    PubMed  Google Scholar 

  140. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2(5):507–17.

    PubMed  Google Scholar 

  141. Weitkamp LR, Moss AJ. The long QT (Romano-Ward) syndrome locus, LQT, is probably linked to the HLA loci. Cytogenet Cell Genet. 1985;40:775.

    Google Scholar 

  142. Itoh S, Munemura S, Satoh H. A study of the inheritance pattern of Romano-Ward syndrome. Prolonged Q-T interval, syncope, and sudden death. Clin Pediatr (Phila). 1982;21(1):20–4.

    CAS  Google Scholar 

  143. Weitkamp LR, Moss AJ, Lewis RA, Hall WJ, MacCluer JW, Schwartz PJ, Locati EH, Tzivoni D, Vincent GM, Robinson JL, Guttormsen SA. Analysis of HLA and disease susceptibility: chromosome 6 genes and sex influence long-QT phenotype. Am J Hum Genet. 1994;55(6):1230–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Selzer A, Wray HW. Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation. 1964;30:17–26.

    CAS  PubMed  Google Scholar 

  145. Dessertenne F. La tachycardie ventriculaire à deux foyers opposés variables [ventricular tachycardia with 2 variable opposing foci]. Arch Mal Coeur Vaiss. 1966;59(2):263–72.

    CAS  PubMed  Google Scholar 

  146. Viskin S, Fish R, Zeltser D, Belhassen B, Heller K, Brosh D, Laniado S, Barron HV. Arrhythmias in the congenital long QT syndrome: how often is torsade de pointes pause dependent? Heart. 2000;83(6):661–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.

    CAS  PubMed  Google Scholar 

  148. Gale GE, Bosman CK, Tucker RB, Barlow JB. Hereditary prolongation of QT interval. Study of two families. Br Heart J. 1970;32(4):505–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285(16):903–4.

    CAS  PubMed  Google Scholar 

  150. Moss AJ, Schwartz PJ. Sudden death and the idiopathic long Q-T syndrome. Am J Med. 1979;66(1):6–7.

    CAS  PubMed  Google Scholar 

  151. Di Segni E, David D, Katzenstein M, Klein HO, Kaplinsky E, Levy MJ. Permanent overdrive pacing for the suppression of recurrent ventricular tachycardia in a newborn with long QT syndrome. J Electrocardiol. 1980;13(2):189–92.

    PubMed  Google Scholar 

  152. Klein HO, Levi A, Kaplinsky E, Di Segni E, David D. Congenital long-QT syndrome: deleterious effect of long-term high-rate ventricular pacing and definitive treatment by cardiac transplantation. Am Heart J. 1996;132(5):1079–81.

    CAS  PubMed  Google Scholar 

  153. Shimizu W, Kurita T, Matsuo K, Suyama K, Aihara N, Kamakura S, Towbin JA, Shimomura K. Improvement of repolarization abnormalities by a K + channel opener in the LQT1 form of congenital long-QT syndrome. Circulation. 1998;97(16):1581–8.

    CAS  PubMed  Google Scholar 

  154. Itoh T, Kikuchi K, Odagawa Y, Takata S, Yano K, Okada S, Haneda N, Ogawa S, Nakano O, Kawahara Y, Kasai H, Nakayama T, Fukutomi T, Sakurada H, Shimizu A, Yazaki Y, Nagai R, Nakamura Y, Tanaka T. Correlation of genetic etiology with response to beta-adrenergic blockade among symptomatic patients with familial long-QT syndrome. J Hum Genet. 2001;46(1):38–40.

    CAS  PubMed  Google Scholar 

  155. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet. 1997;15(2):186–9.

    CAS  PubMed  Google Scholar 

  156. Tyson J, Tranebjaerg L, McEntagart M, Larsen LA, Christiansen M, Whiteford ML, Bathen J, Aslaksen B, Sorland SJ, Lund O, Pembrey ME, Malcolm S, Bitner-Glindzicz M. Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen. Hum Genet. 2000;107(5):499–503.

    CAS  PubMed  Google Scholar 

  157. Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J. 2000;19(3):332–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109(15):1834–41. Epub 2004 Mar 29.

    PubMed  Google Scholar 

  159. Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor J, Bathen J, Aslaksen B, Sorland SJ, Lund O, Malcolm S, Pembrey M, Bhattacharya S, Bitner-Glindzicz M. IsK and KvLQT1: mutation in either of the two components of the delayed rectifier potassium channel can cause the Jervell and Lange-Nielsen syndrome. Am J Hum Genet. 1997;61:A349.

    Google Scholar 

  160. Schulze-Bahr E, Haverkamp W, Wedekind H, Rubie C, Hördt M, Borggrefe M, Assmann G, Breithardt G, Funke H. Autosomal recessive long-QT syndrome (Jervell Lange-Nielsen syndrome) is genetically heterogeneous. Hum Genet. 1997;100(5–6):573–6.

    CAS  PubMed  Google Scholar 

  161. Duggal P, Vesely MR, Wattanasirichaigoon D, Villafane J, Kaushik V, Beggs AH. Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome. Circulation. 1998;97(2):142–6.

    CAS  PubMed  Google Scholar 

  162. Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, Baro I, Wilde AA. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.

    PubMed  Google Scholar 

  163. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.

    CAS  PubMed  Google Scholar 

  164. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97(2):175–87.

    CAS  PubMed  Google Scholar 

  165. Lees-Miller JP, Kondo C, Wang L, Duff HJ. Electrophysiological characterization of an alternatively processed ERG K + channel in mouse and human hearts. Circ Res. 1997;81(5):719–26.

    CAS  PubMed  Google Scholar 

  166. London B, Trudeau MC, Newton KP, Beyer AK, Copeland NG, Gilbert DJ, Jenkins NA, Satler CA, Robertson GA. Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K + current. Circ Res. 1997;81(5):870–8.

    CAS  PubMed  Google Scholar 

  167. Pond AL, Nerbonne JM. ERG proteins and functional cardiac I(Kr) channels in rat, mouse, and human heart. Trends Cardiovasc Med. 2001;11(7):286–94.

    CAS  PubMed  Google Scholar 

  168. Zhou Z, Gong Q, Epstein ML, January CT. HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J Biol Chem. 1998;273(33):21061–6.

    CAS  PubMed  Google Scholar 

  169. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation. 2006;113(3):365–73.

    CAS  PubMed  Google Scholar 

  170. Petrecca K, Atanasiu R, Akhavan A, Shrier A. N-linked glycosylation sites determine HERG channel surface membrane expression. J Physiol. 1999;515(Pt 1):41–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K + −channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996;93(5):2208–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Ficker E, Jarolimek W, Kiehn J, Baumann A, Brown AM. Molecular determinants of dofetilide block of HERG K + channels. Circ Res. 1998;82(3):386–95.

    CAS  PubMed  Google Scholar 

  173. Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996;379(6568):833–6.

    CAS  PubMed  Google Scholar 

  174. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    CAS  PubMed  Google Scholar 

  175. Imboden M, Swan H, Denjoy I, Van Langen IM, Latinen-Forsblom PJ, Napolitano C, Fressart V, Breithardt G, Berthet M, Priori S, Hainque B, Wilde AA, Schulze-Bahr E, Feingold J, Guicheney P. Female predominance and transmission distortion in the long-QT syndrome. N Engl J Med. 2006;355(26):2744–51.

    CAS  PubMed  Google Scholar 

  176. Rajamani S, Anderson CL, Anson BD, January CT. Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation. 2002;105(24):2830–5.

    CAS  PubMed  Google Scholar 

  177. del Camino D, Holmgren M, Liu Y, Yellen G. Blocker protection in the pore of a voltage-gated K + channel and its structural implications. Nature. 2000;403(6767):321–5.

    PubMed  Google Scholar 

  178. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des. 2006;12(18):2271–83.

    CAS  PubMed  Google Scholar 

  179. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm. 2005;2(7):758–72.

    PubMed  Google Scholar 

  180. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A. 2000;97(22):12329–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5. Epub 2003 Dec 15.

    CAS  PubMed  Google Scholar 

  182. Ulens C, Tytgat J. Redox state dependency of HERGS631C channel pharmacology: relation to C-type inactivation. FEBS Lett. 2000;474(1):111–5.

    CAS  PubMed  Google Scholar 

  183. Sesti F, Abbott GW, Wei J, Murray KT, Saksena S, Schwartz PJ, Priori SG, Roden DM, George Jr AL, Goldstein SA. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A. 2000;97(19):10613–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Petersen CI, McFarland TR, Stepanovic SZ, Yang P, Reiner DJ, Hayashi K, George AL, Roden DM, Thomas JH, Balser JR. In vivo identification of genes that modify ether-a-go-go-related gene activity in Caenorhabditis elegans may also affect human cardiac arrhythmia. Proc Natl Acad Sci U S A. 2004;101(32):11773–8. Epub 2004 Jul 27.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Millat G, Chevalier P, Restier-Miron L, Da Costa A, Bouvagnet P, Kugener B, Fayol L, Gonzalez Armengod C, Oddou B, Chanavat V, Froidefond E, Perraudin R, Rousson R, Rodriguez-Lafrasse C. Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin Genet. 2006;70(3):214–27.

    CAS  PubMed  Google Scholar 

  186. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wang R, Ma N, Su X, Niu K, Pei Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J, Chen Y. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75(5):899–905. Epub 2004 Sep 13.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, Bjerregaard P. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.

    CAS  PubMed  Google Scholar 

  188. Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394–6.

    PubMed  Google Scholar 

  189. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70. Epub 2003 Aug 18.

    PubMed  Google Scholar 

  190. Gouas L, Nicaud V, Berthet M, Forhan A, Tiret L, Balkau B, Guicheney P. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet. 2005;13(11):1213–22.

    CAS  PubMed  Google Scholar 

  191. Christiansen M, Tønder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, Kanters JK, Jacobsen JR, Fosdal I, Wettrell G, Kjeldsen K. Mutations in the HERG K + −ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol. 2005;95(3):433–4.

    CAS  PubMed  Google Scholar 

  192. Nerbonne JM, Nichols CG, Schwarz TL, Escande D. Genetic manipulation of cardiac K(+) channel function in mice: what have we learned, and where do we go from here? Circ Res. 2001;89(11):944–56.

    CAS  PubMed  Google Scholar 

  193. Xu H, Guo W, Nerbonne JM. Four kinetically distinct depolarization-activated K + currents in adult mouse ventricular myocytes. J Gen Physiol. 1999;113(5):661–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. Differential expression of voltage-gated K + channel subunits in adult rat heart. Relation to functional K + channels? Circ Res. 1995;77(2):361–9.

    CAS  PubMed  Google Scholar 

  195. Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D. Role of the Kv4.3 K + channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res. 1996;79(4):659–68.

    CAS  PubMed  Google Scholar 

  196. Bou-Abboud E, Nerbonne JM. Molecular correlates of the calcium-independent, depolarization-activated K + currents in rat atrial myocytes. J Physiol. 1999;517(Pt 2):407–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000;403(6769):553–6.

    CAS  PubMed  Google Scholar 

  198. Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K + channels. Neuron. 2003;37(3):449–61.

    CAS  PubMed  Google Scholar 

  199. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol. 2005;565(Pt 3):751–6. Epub 2005 May 12.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res. 2009;104(6):758–69. Epub 2009 Feb 12.

    CAS  PubMed  Google Scholar 

  201. Levy DI, Cepaitis E, Wanderling S, Toth PT, Archer SL, Goldstein SA. The membrane protein MiRP3 regulates Kv4.2 channels in a KChIP-dependent manner. J Physiol. 2010;588(Pt 14):2657–68. Epub 2010 May 24.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Radicke S, Vaquero M, Caballero R, Gomez R, Nunez L, Tamargo J, Ravens U, Wettwer E, Delpon E. Effects of MiRP1 and DPP6 beta-subunits on the blockade induced by flecainide of Kv4.3/KChIP2 channels. Br J Pharmacol. 2008;154(4):774–86. Epub 2008 Apr 21.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Bähring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D. Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem. 2001;276(26):23888–94. Epub 2001 Apr 3.

    PubMed  Google Scholar 

  204. Barghaan J, Tozakidou M, Ehmke H, Bähring R. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys J. 2008;94(4):1276–94. Epub 2007 Nov 2.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Hovind LJ, Skerritt MR, Campbell DL. K(V)4.3 N-terminal deletion mutant Delta2-39: effects on inactivation and recovery characteristics in both the absence and presence of KChIP2b. Channels. 2011;5(1):43–55. Epub 2011 Jan 1.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Liu W, Deng J, Xu J, Wang H, Yuan M, Liu N, Jiang Y, Liu J. High-mobility group box 1 (HMGB1) downregulates cardiac transient outward potassium current (Ito) through downregulation of Kv4.2 and Kv4.3 channel transcripts and proteins. J Mol Cell Cardiol. 2010;49(3):438–48. Epub 2010 May 17.

    CAS  PubMed  Google Scholar 

  207. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC. Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J Gen Physiol. 1999;113(4):581–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Dixon JE, McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res. 1994;75(2):252–60.

    CAS  PubMed  Google Scholar 

  209. Wickenden AD, Jegla TJ, Kaprielian R, Backx PH. Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K + current in rat ventricle. Am J Physiol. 1999;276(5 Pt 2):H1599–607.

    CAS  PubMed  Google Scholar 

  210. Bénitah JP, Gomez AM, Bailly P, Da Ponte JP, Berson G, Delgado C, Lorente P. Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol. 1993;469:111–38.

    PubMed Central  PubMed  Google Scholar 

  211. Beuckelmann DJ, Näbauer M, Erdmann E. Alterations of K + currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res. 1993;73(2):379–85.

    CAS  PubMed  Google Scholar 

  212. Näbauer M, Kääb S. Potassium channel down-regulation in heart failure. Cardiovasc Res. 1998;37(2):324–34.

    PubMed  Google Scholar 

  213. Tomita F, Bassett AL, Myerburg RJ, Kimura S. Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res. 1994;75(2):296–303.

    CAS  PubMed  Google Scholar 

  214. Wang Y, Cheng J, Chen G, Rob F, Naseem RH, Nguyen L, Johnstone JL, Hill JA. Remodeling of outward K + currents in pressure-overload heart failure. J Cardiovasc Electrophysiol. 2007;18(8):869–75. Epub 2007 May 30.

    PubMed  Google Scholar 

  215. Kaprielian R, Sah R, Nguyen T, Wickenden AD, Backx PH. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, I(to) K(+) currents, and [Ca(2+)](i) transients. Am J Physiol Heart Circ Physiol. 2002;283(3):H1157–68.

    CAS  PubMed  Google Scholar 

  216. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation. 1996;93(2):372–9.

    CAS  PubMed  Google Scholar 

  217. Tomaszewski W. Changements electrocardiographiques observés chez un homme mort de froid. Arch Mal Coeur Vaiss. 1938;31:525–8.

    Google Scholar 

  218. Otto CM, Tauxe RV, Cobb LA, Greene HL, Gross BW, Werner JA, Burroughs RW, Samson WE, Weaver WD, Trobaugh GB. Ventricular fibrillation causes sudden death in Southeast Asian immigrants. Ann Intern Med. 1984;101(1):45–7.

    CAS  PubMed  Google Scholar 

  219. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.

    CAS  PubMed  Google Scholar 

  220. Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol. 1996;27(5):1061–70.

    CAS  PubMed  Google Scholar 

  221. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2009;7(4):549–58.

    PubMed Central  PubMed  Google Scholar 

  222. Corlan AD, Amuzescu B, Milicin I, Iordachescu V, Poenaru E, Corlan I, De Ambroggi L. Intercellular conductance variability influences early repolarization potentials in a model of the myocardial tissue with stochastic architecture. In: 7th international symposium on Advanced Topics in Electrical Engineering (ATEE). 2011. Bucharest. p. 1–4. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5952183.

  223. Weidmann S. Rectifier properties of Purkinje fibers. Am J Physiol. 1955;183(3):761.

    Google Scholar 

  224. Katz B. Les constantes électriques de la membrane du muscle. Arch Sci Physiol. 1949;2:285–99.

    Google Scholar 

  225. Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J Physiol. 1994;478(Pt 1):1–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Yang J, Jan YN, Jan LY. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K + channel. Neuron. 1995;14(5):1047–54.

    CAS  PubMed  Google Scholar 

  227. Ruppersberg JP, Fakler B, Brandle U, Zenner H-P, Schultz JH. An N-terminal site controls blocker-release in Kir2.1 channels. Biophys J. 1996;70:A361.

    Google Scholar 

  228. Qu Z, Yang Z, Cui N, Zhu G, Liu C, Xu H, Chanchevalap S, Shen W, Wu J, Li Y, Jiang C. Gating of inward rectifier K + channels by proton-mediated interactions of N- and C-terminal domains. J Biol Chem. 2000;275(41):31573–80.

    CAS  PubMed  Google Scholar 

  229. Koumi S, Backer CL, Arentzen CE, Sato R. Beta-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts. J Clin Invest. 1995;96(6):2870–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Koumi S, Wasserstrom JA, Ten Eick RE. Beta-adrenergic and cholinergic modulation of inward rectifier K + channel function and phosphorylation in guinea-pig ventricle. J Physiol. 1995;486(Pt 3):661–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Wischmeyer E, Karschin A. Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K + channels by direct protein kinase A-mediated phosphorylation. Proc Natl Acad Sci U S A. 1996;93(12):5819–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Wischmeyer E, Döring F, Karschin A. Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem. 1998;273(51):34063–8.

    CAS  PubMed  Google Scholar 

  233. Cho H, Lee D, Lee SH, Ho WK. Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K + channels in a receptor-specific manner. Proc Natl Acad Sci U S A. 2005;102(12):4643–8. Epub 2005 Mar 14.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Preisig-Müller R, Schlichthorl G, Goerge T, Heinen S, Brüggemann A, Rajan S, Derst C, Veh RW, Daut J. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci U S A. 2002;99(11):7774–9.

    PubMed Central  PubMed  Google Scholar 

  235. Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George Jr AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptáček LJ. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.

    CAS  PubMed  Google Scholar 

  236. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S, Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptáček LJ, Tawil R. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971;60(5):559–64.

    CAS  PubMed  Google Scholar 

  238. Stubbs WA. Bidirectional ventricular tachycardia in familial hypokalaemic periodic paralysis. Proc R Soc Med. 1976;69(3):223–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Kramer LD, Cole JP, Messenger JC, Ellestad MH. Cardiac dysfunction in a patient with familial hypokalemic periodic paralysis. Chest. 1979;75(2):189–92.

    CAS  PubMed  Google Scholar 

  240. Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Ozdemir C, Griggs RC. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994;35(3):326–30.

    CAS  PubMed  Google Scholar 

  241. Sansone V, Griggs RC, Meola G, Ptacek LJ, Barohn R, Iannaccone S, Bryan W, Baker N, Janas SJ, Scott W, Ririe D, Tawil R. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.

    CAS  PubMed  Google Scholar 

  242. Canún S, Pérez N, Beirana LG. Andersen syndrome autosomal dominant in three generations. Am J Med Genet. 1999;85(2):147–56.

    PubMed  Google Scholar 

  243. Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George Jr AL, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71(3):663–8. Epub 2002 Jul 29.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Donaldson MR, Jensen JL, Tristani-Firouzi M, Tawil R, Bendahhou S, Suarez WA, Cobo AM, Poza JJ, Behr E, Wagstaff J, Szepetowski P, Pereira S, Mozaffar T, Escolar DM, Fu YH, Ptacek LJ. PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology. 2003;60(11):1811–6.

    CAS  PubMed  Google Scholar 

  245. Choi BO, Kim J, Suh BC, Yu JS, Sunwoo IN, Kim SJ, Kim GH, Chung KW. Mutations of KCNJ2 gene associated with Andersen-Tawil syndrome in Korean families. J Hum Genet. 2007;52(3):280–3. Epub 2007 Jan 9.

    CAS  PubMed  Google Scholar 

  246. Bendahhou S, Fournier E, Gallet S, Menard D, Larroque MM, Barhanin J. Corticosteroid-exacerbated symptoms in an Andersen’s syndrome kindred. Hum Mol Genet. 2007;16(8):900–6. Epub 2007 Feb 26.

    CAS  PubMed  Google Scholar 

  247. Chan HF, Chen ML, Su JJ, Ko LC, Lin CH, Wu RM. A novel neuropsychiatric phenotype of KCNJ2 mutation in one Taiwanese family with Andersen-Tawil syndrome. J Hum Genet. 2010;55(3):186–8. Epub 2010 Jan 29.

    PubMed  Google Scholar 

  248. Junker J, Haverkamp W, Schulze-Bahr E, Eckardt L, Paulus W, Kiefer R. Amiodarone and acetazolamide for the treatment of genetically confirmed severe Andersen syndrome. Neurology. 2002;59(3):466.

    CAS  PubMed  Google Scholar 

  249. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332(4):1012–9.

    CAS  PubMed  Google Scholar 

  250. Fauconnier J, Lacampagne A, Rauzier JM, Vassort G, Richard S. Ca2 + −dependent reduction of IK1 in rat ventricular cells: a novel paradigm for arrhythmia in heart failure? Cardiovasc Res. 2005;68(2):204–12. Epub 2005 Aug 3.

    CAS  PubMed  Google Scholar 

  251. Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103(4):485–90.

    CAS  PubMed  Google Scholar 

  252. Tester DJ, Kopplin LJ, Will ML, Ackerman MJ. Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm. 2005;2(10):1099–105.

    PubMed  Google Scholar 

  253. Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K + channels in isolated pacemaker cells of the mammalian heart. Nature. 1983;303(5914):250–3.

    CAS  PubMed  Google Scholar 

  254. Chandy KG, Gutman GA. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci. 1993;14(12):434.

    CAS  PubMed  Google Scholar 

  255. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K + channel in heart. Nature. 1987;325(6102):321–6.

    CAS  PubMed  Google Scholar 

  256. Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U, Dobrev D. Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK, ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res. 2007;74(3):426–37. Epub 2007 Feb 12.

    CAS  PubMed  Google Scholar 

  257. Yeh YH, Ehrlich JR, Qi X, Hébert TE, Chartier D, Nattel S. Adrenergic control of a constitutively active acetylcholine-regulated potassium current in canine atrial cardiomyocytes. Cardiovasc Res. 2007;74(3):406–15. Epub 2007 Feb 12.

    CAS  PubMed  Google Scholar 

  258. Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron. 1998;20(1):103–14.

    CAS  PubMed  Google Scholar 

  259. Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI, Clapham DE. Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol. 2001;37(8):2136–43.

    CAS  PubMed  Google Scholar 

  260. Yang Y, Yang Y, Liang B, Liu J, Li J, Grunnet M, Olesen SP, Rasmussen HB, Ellinor PT, Gao L, Lin X, Li L, Wang L, Xiao J, Liu Y, Liu Y, Zhang S, Liang D, Peng L, Jespersen T, Chen YH. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet. 2010;86(6):872–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23. Epub 2008 May 27.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP. K + channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Nichols CG, Lederer WJ, Cannell MB. ATP dependence of KATP channel kinetics in isolated membrane patches from rat ventricle. Biophys J. 1991;60(5):1164–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Weiss JN, Venkatesh N, Lamp ST. ATP-sensitive K + channels and cellular K + loss in hypoxic and ischaemic mammalian ventricle. J Physiol. 1992;447:649–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Ferrero Jr JM, Saiz J, Ferrero JM, Thakor NV. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K + current. Circ Res. 1996;79(2):208–21.

    CAS  PubMed  Google Scholar 

  266. Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2001;98(13):7623–8. Epub 2001 Jun 5.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Crawford RM, Budas GR, Jovanovic S, Ranki HJ, Wilson TJ, Davies AM, Jovanovic A. M-LDH serves as a sarcolemmal K(ATP) channel subunit essential for cell protection against ischemia. EMBO J. 2002;21(15):3936–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATP-sensitive K + channel in vivo. FASEB J. 2002;16(1):102–4. Epub 2001 Nov 29.

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, Srivastava S, Liu W, Malester B, Yoshida H, Coetzee WA. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function. J Biol Chem. 2005;280(46):38464–70. Epub 2005 Sep 16.

    CAS  PubMed  Google Scholar 

  270. DiFrancesco D, Ojeda C. Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibres. J Physiol. 1980;308:353–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996;58:299–327.

    CAS  PubMed  Google Scholar 

  272. Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature. 2001;411(6839):805–10.

    CAS  PubMed  Google Scholar 

  273. Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A. 2009;106(29):12189–94. Epub 2009 Jul 1.

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006;354(2):151–7.

    CAS  PubMed  Google Scholar 

  275. Männikkö R, Pandey S, Larsson HP, Elinder F. Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties. J Gen Physiol. 2005;125(3):305–26. Epub 2005 Feb 14.

    PubMed Central  PubMed  Google Scholar 

  276. Bacos JM, Eagan JT, Orgain ES. Congenital familial nodal rhythm. Circulation. 1960;22:887–95.

    CAS  PubMed  Google Scholar 

  277. Surawicz B, Hariman RJ. Follow-up of the family with congenital absence of sinus rhythm. Am J Cardiol. 1988;61(6):467–9.

    CAS  PubMed  Google Scholar 

  278. Lehmann H, Klein UE. Familial sinus node dysfunction with autosomal dominant inheritance. Br Heart J. 1978;40(11):1314–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Ruiz de la Fuente S, Prieto F. Heart-hand syndrome. III. A new syndrome in three generations. Hum Genet. 1980;55(1):43–7.

    CAS  PubMed  Google Scholar 

  280. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, Takishita S, Yamashina A, Ohe T, Sunamori M, Hiraoka M, Kimura A. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279(26):27194–8. Epub 2004 Apr 30.

    CAS  PubMed  Google Scholar 

  281. Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, Pras E, Dascal N, Eldar M, Glikson M. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116(5):463–70. Epub 2007 Jul 23.

    CAS  PubMed  Google Scholar 

  282. Ueda K, Hirano Y, Higashiuesato Y, Aizawa Y, Hayashi T, Inagaki N, Tana T, Ohya Y, Takishita S, Muratani H, Hiraoka M, Kimura A. Role of HCN4 channel in preventing ventricular arrhythmia. J Hum Genet. 2009;54(2):115–21. Epub 2009 Jan 23.

    CAS  PubMed  Google Scholar 

  283. Fernández-Velasco M, Goren N, Benito G, Blanco-Rivero J, Boscá L, Delgado C. Regional distribution of hyperpolarization-activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol. 2003;553(Pt 2):395–405. Epub 2003 Sep 26.

    PubMed Central  PubMed  Google Scholar 

  284. Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation. 1997;95(3):568–71.

    CAS  PubMed  Google Scholar 

  285. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A. The properties of the pacemaker current I(F)in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol. 2001;33(3):441–8.

    CAS  PubMed  Google Scholar 

  286. Hoppe UC, Jansen E, Südkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation. 1998;97(1):55–65.

    CAS  PubMed  Google Scholar 

  287. Barbuti A, Baruscotti M, DiFrancesco D. The pacemaker current: from basics to the clinics. J Cardiovasc Electrophysiol. 2007;18(3):342–7. Epub 2007 Jan 30.

    PubMed  Google Scholar 

  288. Mandel Y, Weissman A, Schick R, Barad L, Novak A, Meiry G, Goldberg S, Lorber A, Rosen MR, Itskovitz-Eldor J, Binah O. Human embryonic and induced pluripotent stem cells-derived cardiomyocytes exhibit beat rate variability and power-law behavior. Circulation. 2012;125(7):883–93.

    PubMed Central  PubMed  Google Scholar 

  289. Peters NS, Wit AL. Myocardial architecture and ventricular arrhythmogenesis. Circulation. 1998;97(17):1746–54.

    CAS  PubMed  Google Scholar 

  290. Spray DC, Burt JM. Structure-activity relations of the cardiac gap junction channel. Am J Physiol. 1990;258(2 Pt 1):C195–205.

    CAS  PubMed  Google Scholar 

  291. Kanno S, Saffitz JE. The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol. 2001;10(4):169–77.

    CAS  PubMed  Google Scholar 

  292. Norton KK, Carey JC, Gutmann DH. Oculodentodigital dysplasia with cerebral white matter abnormalities in a two-generation family. Am J Med Genet. 1995;57(3):458–61.

    CAS  PubMed  Google Scholar 

  293. Loddenkemper T, Grote K, Evers S, Oelerich M, Stögbauer F. Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol. 2002;249(5):584–95.

    PubMed  Google Scholar 

  294. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet. 2003;72(2):408–18. Epub 2002 Nov 27.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N. Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet A. 2004;127A(2):152–7.

    PubMed  Google Scholar 

  296. van Steensel MA, Spruijt L, van der Burgt I, Bladergroen RS, Vermeer M, Steijlen PM, van Geel M. A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am J Med Genet A. 2005;132A(2):171–4.

    PubMed  Google Scholar 

  297. Vreeburg M, de Zwart-Storm EA, Schouten MI, Nellen RG, Marcus-Soekarman D, Devies M, van Geel M, van Steensel MA. Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43. Am J Med Genet A. 2007;143(4):360–3.

    CAS  PubMed  Google Scholar 

  298. Kalcheva N, Qu J, Sandeep N, Garcia L, Zhang J, Wang Z, Lampe PD, Suadicani SO, Spray DC, Fishman GI. Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc Natl Acad Sci U S A. 2007;104(51):20512–6. Epub 2007 Dec 11.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Tsui E, Hill KA, Laliberte AM, Paluzzi D, Kisilevsky I, Shao Q, Heathcote JG, Laird DW, Kidder GM, Hutnik CM. Ocular pathology relevant to glaucoma in a Gja1(Jrt/+) mouse model of human oculodentodigital dysplasia. Invest Ophthalmol Vis Sci. 2011;52(6):3539–47. Print 2011 May.

    CAS  PubMed  Google Scholar 

  300. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res. 2001;479(1–2):173–86.

    CAS  PubMed  Google Scholar 

  301. Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354(25):2677–88.

    CAS  PubMed  Google Scholar 

  302. Groenewegen WA, Firouzi M, Bezzina CR, Vliex S, van Langen IM, Sandkuijl L, Smits JP, Hulsbeek M, Rook MB, Jongsma HJ, Wilde AA. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res. 2003;92(1):14–22.

    CAS  PubMed  Google Scholar 

  303. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV. The role of connexin40 in atrial fibrillation. Cardiovasc Res. 2009;84(1):15–23. Epub 2009 Jun 17.

    CAS  PubMed  Google Scholar 

  304. Zemlin CW, Mitrea BG, Pertsov AM. Spontaneous onset of atrial fibrillation. Physica D. 2009;238(11–12):969–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Putney Jr JW. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7(1):1–12.

    CAS  PubMed  Google Scholar 

  306. Putney JW. Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed). 2011;3:980–4.

    Google Scholar 

  307. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992;355(6358):353–6.

    CAS  PubMed  Google Scholar 

  308. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A. 2008;105(8):2895–900. Epub 2008 Feb 19.

    CAS  PubMed Central  PubMed  Google Scholar 

  309. Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S. TRPC channels as STIM1-regulated SOCs. Channels (Austin). 2009;3(4):221–5. Epub 2009 Jul 15.

    CAS  Google Scholar 

  310. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105(10):1023–30. Epub 2009 Sep 24.

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A. 2009;106(13):5400–5. Epub 2009 Mar 16.

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem. 2006;281(44):33487–96. Epub 2006 Sep 1.

    CAS  PubMed  Google Scholar 

  313. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 2006;20(10):1660–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  314. Wu X, Eder P, Chang B, Molkentin JD. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A. 2010;107(15):7000–5. Epub 2010 Mar 29.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Fauconnier J, Lanner JT, Sultan A, Zhang SJ, Katz A, Bruton JD, Westerblad H. Insulin potentiates TRPC3-mediated cation currents in normal but not in insulin-resistant mouse cardiomyocytes. Cardiovasc Res. 2007;73(2):376–85. Epub 2006 Oct 27.

    CAS  PubMed  Google Scholar 

  316. Ju YK, Allen DG. Store-operated Ca2+ entry and TRPC expression; possible roles in cardiac pacemaker tissue. Heart Lung Circ. 2007;16(5):349–55. Epub 2007 Sep 5.

    CAS  PubMed  Google Scholar 

  317. Freichel M, Schweig U, Stauffenberger S, Freise D, Schorb W, Flockerzi V. Store-operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol Biochem. 1999;9(4–5):270–83.

    CAS  PubMed  Google Scholar 

  318. Vassort G, Alvarez J. Transient receptor potential: a large family of new channels of which several are involved in cardiac arrhythmia. Can J Physiol Pharmacol. 2009;87(2):100–7.

    CAS  PubMed  Google Scholar 

  319. Colquhoun D, Neher E, Reuter H, Stevens CF. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature. 1981;294(5843):752–4.

    CAS  PubMed  Google Scholar 

  320. Nilius B, Vennekens R. From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch. 2006;453(3):313–21. Epub 2006 May 6.

    CAS  PubMed  Google Scholar 

  321. Gannier F, White E, Lacampagne A, Garnier D, Le Guennec JY. Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res. 1994;28(8):1193–8.

    CAS  PubMed  Google Scholar 

  322. Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, Vereecke J, Mubagwa K. Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol. 2004;559(Pt 3):761–76. Epub 2004 Jul 22.

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Mubagwa K, Stengl M, Flameng W. Extracellular divalent cations block a cation non-selective conductance unrelated to calcium channels in rat cardiac muscle. J Physiol. 1997;502(Pt 2):235–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  324. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115(7):863–77.

    CAS  PubMed  Google Scholar 

  325. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci U S A. 2007;104(41):16323–8. Epub 2007 Oct 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Jiang H, Tian SL, Zeng Y, Li LL, Shi J. TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation. Brain Res Bull. 2008;76(1–2):124–30. Epub 2008 Feb 12.

    CAS  PubMed  Google Scholar 

  327. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 2010;106(5):992–1003.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Ashcroft FM. Ion channels and disease. Channelopathies. San Diego: Academic; 2000. 481 p.

    Google Scholar 

  329. Amuzescu B, Georgescu A, Nistor G, Popescu M, Svab I, Flonta ML, Corlan AD. Stability and sustained oscillations in a ventricular cardiomyocyte model. Interdiscip Sci Comput Life Sci. 2012;4(1):1–18.

    Google Scholar 

  330. Tran DX, Sato D, Yochelis A, Weiss JN, Garfinkel A, Qu Z. Bifurcation and chaos in a model of cardiac early afterdepolarizations. Phys Rev Lett. 2009;102(25):258103. Epub 2009 Jun 25.

    PubMed Central  PubMed  Google Scholar 

  331. Herbert E, Chahine M. Clinical aspects and physiopathology of Brugada syndrome: review of current concepts. Can J Physiol Pharmacol. 2006;84(8–9):795–802.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Amuzescu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Amuzescu, B., Istrate, B., Musat, S. (2014). Channelopathies and Heart Disease. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics