Skip to main content

Ventricular Arrhythmias During Acute Myocardial Ischemia/Infarction: Mechanisms and Management

  • Chapter
  • First Online:
Cardiac Arrhythmias

Abstract

Ventricular arrhythmias during the acute phase of myocardial infarction are common and account for approximately 80 % of sudden cardiac death cases. A biphasic curve has been observed in various species and possibly applies also in man. The incidence of ventricular arrhythmias in the prehospital phase has remained stable during the past decade, but in-hospital rates have declined markedly, mainly due to the widespread use of reperfusion therapies. Ventricular tachycardia and fibrillation are generated by all known arrhythmogenic mechanisms, acting successively or in combination. However, the factors governing the susceptibility to ischemia-related arrhythmias remain incompletely understood. Beta-blockade is the mainstay of treatment; class I agents have been largely superseded by amiodarone, but combined administration may be warranted in difficult cases. The effect of ventricular arrhythmias on long-term prognosis needs to be examined in large-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APD:

Action potential duration

ATP:

Adenosine triphosphate

ERP:

Effective refractory period

ET:

Endothelin

MI:

Myocardial infarction

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. Roger VL. Epidemiology of myocardial infarction. Med Clin North Am. 2007;91:537–52.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Luderitz B. Past and future aspects of clinical electrophysiology. Cardiol J. 2008;15:293–7.

    PubMed  Google Scholar 

  3. Erichsen JE. On the influence of the coronary circulation on the action of the heart. Lond Med Gaz. 1842;2:561.

    Google Scholar 

  4. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114:e385–484.

    Article  PubMed  Google Scholar 

  5. Luqman N, Sung RJ, Wang CL, Kuo CT. Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications. Int J Cardiol. 2007;119:283–90.

    Article  PubMed  Google Scholar 

  6. Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J. 2008;29:2909–45.

    Article  PubMed  Google Scholar 

  7. O’Doherty M, Tayler DI, Quinn E, Vincent R, Chamberlain DA. Five hundred patients with myocardial infarction monitored within one hour of symptoms. Br Med J (Clin Res Ed). 1983;286:1405–8.

    Article  Google Scholar 

  8. Piccini JP, Berger JS, Brown DL. Early sustained ventricular arrhythmias complicating acute myocardial infarction. Am J Med. 2008;121:797–804.

    Article  PubMed  Google Scholar 

  9. Gheeraert PJ, De Buyzere ML, Taeymans YM, Gillebert TC, Henriques JPS, Backer G, De Bacquer D. Risk factors for primary ventricular fibrillation during acute myocardial infarction: a systematic review and meta-analysis. Eur Heart J. 2006;27:2499–510.

    Article  PubMed  Google Scholar 

  10. Mehta RH, Starr AZ, Lopes RD, Hochman JS, Widimsky P, Pieper KS, Armstrong PW, Granger CB. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA. 2009;301:1779–89.

    Article  CAS  PubMed  Google Scholar 

  11. Ohlow MA, Geller JC, Richter S, Farah A, Muller S, Fuhrmann JT, Lauer B. Incidence and predictors of ventricular arrhythmias after ST-segment elevation myocardial infarction. Am J Emerg Med. 2012;30:580–6.

    Article  PubMed  Google Scholar 

  12. Eifling M, Razavi M, Massumi A. The evaluation and management of electrical storm. Tex Heart Inst J. 2011;38:111–21.

    PubMed Central  PubMed  Google Scholar 

  13. Di Diego JM, Antzelevitch C. Ischemic ventricular arrhythmias: experimental models and their clinical relevance. Heart Rhythm. 2011;8:1963–8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999;79:917–1017.

    CAS  PubMed  Google Scholar 

  15. Verkerk AO, Veldkamp MW, van Ginneken AC, Bouman LN. Biphasic response of action potential duration to metabolic inhibition in rabbit and human ventricular myocytes: role of transient outward current and ATP-regulated potassium current. J Mol Cell Cardiol. 1996;28:2443–56.

    Article  CAS  PubMed  Google Scholar 

  16. Clements-Jewery H, Hearse DJ, Curtis MJ. Phase 2 ventricular arrhythmias in acute myocardial infarction: a neglected target for therapeutic antiarrhythmic drug development and for safety pharmacology evaluation. Br J Pharmacol. 2005;145:551–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Oikonomidis DL, Baltogiannis GG, Kolettis TM. Do endothelin receptor antagonists have an antiarrhythmic potential during acute myocardial infarction? Evidence from experimental studies. J Interv Card Electrophysiol. 2011;28:157–65.

    Article  Google Scholar 

  18. de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, Dalstra J, Daemen MJ, van Ree JW, Stijns RE, Wellens HJ. Circumstances and causes of out-of-hospital cardiac arrest in sudden death survivors. Heart. 1998;79:356–61.

    PubMed  Google Scholar 

  19. Campbell RW, Murray A, Julian DG. Ventricular arrhythmias in first 12 hours of acute myocardial infarction. Natural history study. Br Heart J. 1981;46:351–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Adgey AA, Devlin JE, Webb SW, Mulholland HC. Initiation of ventricular fibrillation outside hospital in patients with acute ischaemic heart disease. Br Heart J. 1982;47:55–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Waalewijn RA, de Vos R, Koster RW. Out-of-hospital cardiac arrests in Amsterdam and its surrounding areas: results from the Amsterdam resuscitation study (ARREST) in ‘Utstein’ style. Resuscitation. 1998;38:157–67.

    Article  CAS  PubMed  Google Scholar 

  22. Wang FS, Lien WP, Fong TE, Lin JL, Cherng JJ, Chen JH, Chen JJ. Terminal cardiac electrical activity in adults who die without apparent cardiac disease. Am J Cardiol. 1986;58:491–5.

    Article  CAS  PubMed  Google Scholar 

  23. Smith 4th WT, Fleet WF, Johnson TA, Engle CL, Cascio WE. The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Experimental Cardiology Group, University of North Carolina. Circulation. 1995;92:3051–60.

    Article  PubMed  Google Scholar 

  24. Cascio WE, Yang H, Muller-Borer BJ, Johnson TA. Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation. J Electrocardiol. 2005;38:55–9.

    Article  PubMed  Google Scholar 

  25. Wilde AA, Aksnes G. Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia. Cardiovasc Res. 1995;29:1–15.

    CAS  PubMed  Google Scholar 

  26. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM. Quantification of [Ca21]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res. 1990;66:1255–67.

    Article  CAS  PubMed  Google Scholar 

  27. Qian YW, Clusin WT, Lin SF, Han J, Sung RJ. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart. Circulation. 2001;104:2082–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sutton PM, Taggart P, Opthof T, Coronel R, Trimlett R, Pugsley W, Kallis P. Repolarisation and refractoriness during early ischaemia in humans. Heart. 2000;84:365–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Oliver MF. Metabolic causes and prevention of ventricular fibrillation during acute coronary syndromes. Am J Med. 2002;112:305–11.

    Article  CAS  PubMed  Google Scholar 

  30. Tansey MJ, Opie LH. Relation between plasma free fatty acids and arrhythmias within the first twelve hours of acute myocardial infarction. Lancet. 1983;2:419–22.

    Article  CAS  PubMed  Google Scholar 

  31. Hendrickson SC, St Louis JD, Lowe JE, Abdel-aleem S. Free fatty acid metabolism during myocardial ischemia and reperfusion. Mol Cell Biochem. 1997;166:85–94.

    Article  CAS  PubMed  Google Scholar 

  32. de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004;53:2873–82.

    Article  PubMed  Google Scholar 

  33. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. Lancet. 2004;364:1786–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kim D, Duff RA. Regulation of K+ channels in cardiac myocytes by free fatty acids. Circ Res. 1990;67:1040–6.

    Article  CAS  PubMed  Google Scholar 

  35. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet. 1968;1:710–4.

    Article  CAS  PubMed  Google Scholar 

  36. Oliver MF. Control of free fatty acids during acute myocardial ischaemia. Heart. 2010;96:1883–4.

    Article  CAS  PubMed  Google Scholar 

  37. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res. 2000;87:656–62.

    Article  CAS  PubMed  Google Scholar 

  38. de Groot JR, Wilms-Schopman FJ, Opthof T, Remme CA, Coronel R. Late ventricular arrhythmias during acute regional ischemia in the isolated blood perfused pig heart. Role of electrical cellular coupling. Cardiovasc Res. 2001;50:362–72.

    Article  PubMed  Google Scholar 

  39. Jongsma HJ, Wilders R. Gap junctions in cardiovascular disease. Circ Res. 2000;86:1193–7.

    Article  CAS  PubMed  Google Scholar 

  40. Lameris TW, de Zeeuw S, Alberts G, Boomsma F, Duncker DJ, Verdouw PD, Veld AJ, van Den Meiracker AH. Time course and mechanism of myocardial catecholamine release during transient ischemia in vivo. Circulation. 2000;101:2645–50.

    Article  CAS  PubMed  Google Scholar 

  41. Stables CL, Curtis MJ. Development and characterization of a mouse in vitro model of ischaemia-induced ventricular fibrillation. Cardiovasc Res. 2009;83:397–404.

    Article  CAS  PubMed  Google Scholar 

  42. McHowat J, Creer MH. Thrombin activates a membrane-associated calcium-independent PLA2 in ventricular myocytes. Am J Physiol. 1998;274:C447–54.

    CAS  PubMed  Google Scholar 

  43. Pinet C, Le Grand B, John GW, Coulombe A. Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes: implications for ischemic sodium loading. Circulation. 2002;106:2098–103.

    Article  CAS  PubMed  Google Scholar 

  44. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  45. Proven A, Roderick HL, Conway SJ, Berridge MJ, Horton JK, Capper SJ, Bootman MD. Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J Cell Sci. 2006;119:3363–75.

    Article  CAS  PubMed  Google Scholar 

  46. Yorikane R, Koike H, Miyake S. Electrophysiological effects of endothelin-1 on canine myocardial cells. J Cardiovasc Pharmacol. 1991;17 Suppl 7:S159–62.

    Article  CAS  PubMed  Google Scholar 

  47. Kurz RW, Ren XL, Franz MR. Dispersion and delay of electrical restitution in the globally ischaemic heart. Eur Heart J. 1994;15:547–54.

    Article  CAS  PubMed  Google Scholar 

  48. Stewart DJ, Kubac G, Costello KB, Cernacek P. Increased plasma endothelin-1 in the early hours of acute myocardial infarction. J Am Coll Cardiol. 1991;18:38–43.

    Article  CAS  PubMed  Google Scholar 

  49. Doggrell SA. The endothelin system and its role in acute myocardial infarction. Expert Opin Ther Targets. 2004;8:191–201.

    Article  CAS  PubMed  Google Scholar 

  50. Oikonomidis DL, Tsalikakis DG, Baltogiannis GG, et al. Endothelin-B receptors and ventricular arrhythmogenesis in the rat model of acute myocardial infarction. Basic Res Cardiol. 2011;105:235–45.

    Article  Google Scholar 

  51. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hu D, Viskin S, Oliva A, et al. Novel mutation in the SCN5A gene associated with arrhythmic storm development during acute myocardial infarction. Heart Rhythm. 2007;4:1072–80.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Crotti L. Pleiotropic mutations in ion channels: what lies behind them? Heart Rhythm. 2011;8:56–7.

    Article  PubMed  Google Scholar 

  54. Janse MJ, van Capelle FJ, Morsink H, Kleber AG, Wilms-Schopman F, Cardinal R, d’Alnoncourt CN, Durrer D. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res. 1980;47:151–65.

    Article  CAS  PubMed  Google Scholar 

  55. Pogwizd SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res. 1987;61:352–71.

    Article  CAS  PubMed  Google Scholar 

  56. Friedman PL, Stewart JR, Fenoglio Jr JJ, Wit AL. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs. Circ Res. 1973;33:597–611.

    Article  CAS  PubMed  Google Scholar 

  57. Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81:1094–105.

    Article  CAS  PubMed  Google Scholar 

  58. Parker KK, Lavelle JA, Taylor LK, Wang Z, Hansen DE. Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. J Appl Physiol. 2004;97:377–83.

    Article  PubMed  Google Scholar 

  59. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res. 1999;85: 742–52.

    Article  CAS  PubMed  Google Scholar 

  60. Jalife J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol. 2000;62:25–50.

    Article  CAS  PubMed  Google Scholar 

  61. Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Lin SF, Garfinkel A. Electrical restitution and cardiac fibrillation. J Cardiovasc Electrophysiol. 2002;13:292–5.

    Article  PubMed  Google Scholar 

  62. Coronel R, Wilms-Schopman FJ, Opthof T, Janse MJ. Dispersion of repolarization and arrhythmogenesis. Heart Rhythm. 2009;6:537–43.

    Article  PubMed  Google Scholar 

  63. Kawara T, Derksen R, de Groot JR, et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation. 2001;104:3069–75.

    Article  CAS  PubMed  Google Scholar 

  64. Aye NN, Xue YX, Hashimoto K. Antiarrhythmic effects of cariporide, a novel Na+−H+ exchange inhibitor, on reperfusion ventricular arrhythmias in rat hearts. Eur J Pharmacol. 1997;339:121–7.

    Article  CAS  PubMed  Google Scholar 

  65. Imahashi K, Pott C, Goldhaber JI, Steenbergen C, Philipson KD, Murphy E. Cardiac-specific ablation of the Na+−Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res. 2005;97:916–21.

    Article  CAS  PubMed  Google Scholar 

  66. Pogwizd SM, Corr PB. Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation. 1987;76:404–26.

    Article  CAS  PubMed  Google Scholar 

  67. Hobai IA, O’Rourke B. The potential of Na+/Ca2+ exchange blockers in the treatment of cardiac disease. Expert Opin Investig Drugs. 2004;13:653–64.

    Article  CAS  PubMed  Google Scholar 

  68. Hine LK, Laird N, Hewitt P, Chalmers TC. Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. Arch Intern Med. 1989;149:2694–8.

    Article  CAS  PubMed  Google Scholar 

  69. Gorgels AP, Vos MA, Letsch IS, Verschuuren EA, Bar FW, Janssen JH, Wellens HJ. Usefulness of the accelerated idioventricular rhythm as a marker for myocardial necrosis and reperfusion during thrombolytic therapy in acute myocardial infarction. Am J Cardiol. 1988;61:231–5.

    Article  CAS  PubMed  Google Scholar 

  70. Steinbach KK, Merl O, Frohner K, Hief C, Nurnberg M, Kaltenbrunner W, Podczeck A, Wessely E. Hemodynamics during ventricular tachyarrhythmias. Am Heart J. 1994;127:1102–6.

    Article  CAS  PubMed  Google Scholar 

  71. Kolettis TM, Saksena S. Prophylactic implantable cardioverter defibrillator therapy in high-risk patients with coronary artery disease. Am Heart J. 1994;127:1164–70.

    Article  CAS  PubMed  Google Scholar 

  72. Kolettis TM, Kyriakides ZS, Popov T, Mesiskli T, Papalambrou A, Kremastinos DT. Importance of the site of ventricular tachycardia origin on left ventricular hemodynamics in humans. Pacing Clin Electrophysiol. 1999;22:871–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kolettis TM, Psarros E, Kyriakides ZS, Katsouras CS, Michalis LK, Sideris DA. Haemodynamic and catecholamine response to simulated ventricular tachycardia in man: effect of baseline left ventricular function. Heart. 2003;89:306–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Berger PB, Ruocco NA, Ryan TJ, Frederick MM, Podrid PJ. Incidence and significance of ventricular tachycardia and fibrillation in the absence of hypotension or heart failure in acute myocardial infarction treated with recombinant tissue-type plasminogen activator: results from the Thrombolysis in Myocardial Infarction (TIMI) Phase II trial. J Am Coll Cardiol. 1993;22:1773–9.

    Article  CAS  PubMed  Google Scholar 

  75. Stewart RB, Bardy GH, Greene HL. Wide complex tachycardia: misdiagnosis and outcome after emergent therapy. Ann Intern Med. 1986;104:766–71.

    Article  CAS  PubMed  Google Scholar 

  76. Wolfe CL, Nibley C, Bhandari A, Chatterjee K, Scheinman M. Polymorphous ventricular tachycardia associated with acute myocardial infarction. Circulation. 1991;84:1543–51.

    Article  CAS  PubMed  Google Scholar 

  77. Kolettis TM, Naka KK, Katsouras CS. Radiofrequency catheter ablation for electrical storm in a patient with dilated cardiomyopathy. Hellenic J Cardiol. 2005;46:366–9.

    PubMed  Google Scholar 

  78. Enjoji Y, Mizobuchi M, Shibata K, Yokouchi I, Funatsu A, Kanbayashi D, Kobayashi T, Nakamura S. Catheter ablation for an incessant form of antiarrhythmic drug-resistant ventricular fibrillation after acute coronary syndrome. Pacing Clin Electrophysiol. 2006;29:102–5.

    Article  PubMed  Google Scholar 

  79. Carbucicchio C, Santamaria M, Trevisi N, et al. Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study. Circulation. 2008;117:462–9.

    Article  PubMed  Google Scholar 

  80. Schreieck J, Zrenner B, Deisenhofer I, Schmitt C. Rescue ablation of electrical storm in patients with ischemic cardiomyopathy: a potential-guided ablation approach by modifying substrate of intractable, unmappable ventricular tachycardias. Heart Rhythm. 2005;2:10–4.

    Article  PubMed  Google Scholar 

  81. Tsagalou EP, Kanakakis J, Rokas S, Anastasiou-Nana MI. Suppression by propranolol and amiodarone of an electrical storm refractory to metoprolol and amiodarone. Int J Cardiol. 2005;99:341–2.

    Article  PubMed  Google Scholar 

  82. Kodama I, Kamiya K, Honjo H, Toyama J. Acute and chronic effects of amiodarone on mammalian ventricular cells. Jpn Heart J. 1996;37:719–30.

    Article  CAS  PubMed  Google Scholar 

  83. Du XJ, Esler MD, Dart AM. Sympatholytic action of intravenous amiodarone in the rat heart. Circulation. 1995;91:462–70.

    Article  CAS  PubMed  Google Scholar 

  84. Agelaki MG, Pantos C, Korantzopoulos P, Tsalikakis DG, Baltogiannis GG, Fotopoulos A, Kolettis TM. Comparative antiarrhythmic efficacy of amiodarone and dronedarone during acute myocardial infarction in rats. Eur J Pharmacol. 2007;564:150–7.

    Article  CAS  PubMed  Google Scholar 

  85. Nasir Jr N, Taylor A, Doyle TK, Pacifico A. Evaluation of intravenous lidocaine for the termination of sustained monomorphic ventricular tachycardia in patients with coronary artery disease with or without healed myocardial infarction. Am J Cardiol. 1994;74:1183–6.

    Article  PubMed  Google Scholar 

  86. Piccini JP, Schulte PJ, Pieper KS, et al. Antiarrhythmic drug therapy for sustained ventricular arrhythmias complicating acute myocardial infarction. Crit Care Med. 2011;39:78–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002;288:3035–8.

    Article  PubMed  Google Scholar 

  88. Wyse DG, Friedman PL, Brodsky MA, et al. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001;38:1718–24.

    Article  CAS  PubMed  Google Scholar 

  89. Viskin S, Halkin A, Olgin JE. Treatable causes of sudden death: not really “treatable” or not really the cause? J Am Coll Cardiol. 2001;38:1725–7.

    Article  CAS  PubMed  Google Scholar 

  90. Weng S, Lauven M, Schaefer T, Polontchouk L, Grover R, Dhein S. Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J. 2002;16:1114–6.

    CAS  PubMed  Google Scholar 

  91. Kjolbye AL, Holstein-Rathlou NH, Petersen JS. Anti-arrhythmic peptide N-3-(4-hydroxyphenyl)propionyl Pro-Hyp-Gly-Ala-Gly-OH reduces dispersion of action potential duration during ischemia/reperfusion in rabbit hearts. J Cardiovasc Pharmacol. 2002;40:770–9.

    Article  CAS  PubMed  Google Scholar 

  92. Di Diego JM, Sun ZQ, Antzelevitch C. I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–61.

    PubMed  Google Scholar 

  93. Dhalla AK, Wang WQ, Dow J, Shryock JC, Belardinelli L, Bhandari A, Kloner RA. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2009;297:H1923–9.

    Article  CAS  PubMed  Google Scholar 

  94. Nieminen T, Nanbu DY, Datti IP, Vaz GR, Tavares CA, Pegler JR, Nearing BD, Belardinelli L, Verrier RL. Antifibrillatory effect of ranolazine during severe coronary stenosis in the intact porcine model. Heart Rhythm. 2011;8:608–14.

    Article  PubMed  Google Scholar 

  95. Baltogiannis GG, Tsalikakis DG, Mitsi AC, Hatzistergos KE, Elaiopoulos D, Fotiadis DI, Kyriakides ZS, Kolettis TM. Endothelin receptor-A blockade decreases ventricular arrhythmias after myocardial infarction in rats. Cardiovasc Res. 2005;67:647–54.

    Article  CAS  PubMed  Google Scholar 

  96. Kolettis TM, Baltogiannis GG, Tsalikakis DG, Tzallas AT, Agelaki MG, Fotopoulos A, Fotiadis DI, Kyriakides ZS. Effects of dual endothelin receptor blockade on sympathetic activation and arrhythmogenesis during acute myocardial infarction in rats. Eur J Pharmacol. 2008;580:241–9.

    Article  CAS  PubMed  Google Scholar 

  97. Elaiopoulos DA, Tsalikakis DG, Agelaki MG, Baltogiannis GG, Mitsi AC, Fotiadis DI, Kolettis TM. Growth hormone decreases phase II ventricular tachyarrhythmias during acute myocardial infarction in rats. Clin Sci (Lond). 2007;112:385–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos M. Kolettis MD, PhD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kolettis, T.M. (2014). Ventricular Arrhythmias During Acute Myocardial Ischemia/Infarction: Mechanisms and Management . In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics