Skip to main content

Tubular Flow Reactors

  • Chapter
  • First Online:
Book cover Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Tubular flow reactors for studying combustion chemistry are extensively used due to their operational flexibility. In these reactors, conditions of temperature, pressure, and gas fluid residence time can be carefully controlled. The different real reactors (turbulent and laminar regimes, with and without temperature profiles) can attain almost ideal behavior (plug flow), diminishing the mathematical difficulties in the simulation of such environments. Nevertheless, the advantages and disadvantages, as well as the deviations of real reactors from ideality, must be considered in order to choose the most suitable reaction system in each case. Tubular flow reactors are proposed as one of the possible facilities to investigate the oxidation of oxygenated compounds, which have been suggested as additives to diesel fuel in order to reduce the formation of soot. Among oxygenates, this chapter focuses on the study of some alcohols (methanol, ethanol, propanol, and butanol) and ethers (dimethylether and dimethoxymethane), aiming to show the results that can be obtained by using a tubular flow reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Reactant

C :

Concentration

d t :

Tube diameter

D :

Dispersion coefficient

\(\cal{D}\) :

Diffusion coefficient

E(t):

Residence time distribution

F :

Molar flow rate

k :

Reaction rate constant

L :

Length of the reactor

p :

Pressure

Q :

Volumetric flow rate

r :

Radius

(−r A):

Rate of reaction

R :

Radius

t :

Time

T :

Temperature

u :

Velocity of fluid

V :

Volume

X A :

Fraction of A converted

μ:

Viscosity of fluid

ρ:

Density of fluid

Bo :

Bodenstein number

Re :

Reynolds number

Sc :

Schmidt number

DME:

Dimethylether

DMM:

Dimethoxymethane

PFR:

Plug flow reactor

RTD:

Residence time distribution

References

  • Abián M, Esarte C, Millera Á et al (2008) Oxidation of acetylene-ethanol mixtures and their interaction with NO. Energy Fuel 22:3814–3823

    Article  Google Scholar 

  • Alexiou A, Williams A (1996) Soot formation in shock-tube pyrolysis of toluene, toluene-methanol, toluene-ethanol, and toluene-oxygen mixtures. Combust Flame 104:51–65

    Article  Google Scholar 

  • Alzueta MU, Hernández JM (2002) Ethanol oxidation and its interaction with nitric oxide. Energy Fuel 16(1):166–171

    Article  Google Scholar 

  • Alzueta MU, Muro J, Bilbao R et al (1999) Oxidation of dimethyl ether and its interaction with nitrogen oxides. Isr J Chem 39:73–86

    Article  Google Scholar 

  • Alzueta MU, Bilbao R, Finestra M (2001) Methanol oxidation and its interaction with nitric oxide. Energy Fuel 15:724–729

    Article  Google Scholar 

  • Amano T, Dryer FL (1998) Effect of dimethyl ether, NOx, and ethane on CH4 oxidation: high pressure, intermediate-temperature experiments and modeling. Proc Combust Inst 27:397–404

    Google Scholar 

  • Aronowitz D, Naegeli DW, Glassman I (1977) Kinetics of pyrolysis of methanol. J Phys Chem 81:2555–2559

    Article  Google Scholar 

  • Barnard JA (1957) The pyrolysis of n-butanol. Trans Faraday Soc 53:1423–1430

    Article  Google Scholar 

  • Benson SW, Jain DVS (1959) Further studies of pyrolysis of dimethyl ether. J Chem Phys 31:1008–1017

    Article  Google Scholar 

  • Böhm H, Braun-Unkhoff M (2008) Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes. Combust Flame 153:84–96

    Article  Google Scholar 

  • Brumfield B, Sun W, Ju Y et al (2013) Direct in situ quantification of HO2 from a flow reactor. J Phys Chem Lett 4:872–876

    Article  Google Scholar 

  • Cathonnet M, Boettner JC, James H (1982) Study of methanol oxidation and self ignition in the temperature range 500–600 °C. J Chim Phys PCB 79:475–478

    Google Scholar 

  • Choi CY, Reitz RD (1998) An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engine emissions. Fuel 78:1303–1317

    Article  Google Scholar 

  • Curran HJ, Pitz WJ, Westbrook CK et al (1998) A wide range modeling study of dimethyl ether oxidation. Int J Chem Kinet 30:229–241

    Article  Google Scholar 

  • Cutler AH, Antal MJ, Jones M (1988) A critical-evaluation of the plug-flow idealization of tubular-flow reactor data. Ind Eng Chem Res 27:691–697

    Article  Google Scholar 

  • Dagaut P, Boettner JC, Cathonnet M (1992) Kinetic modeling of ethanol pyrolysis and combustion. J Chim Phys PCB 89:867–884

    Google Scholar 

  • Daly CA, Simmie JM, Dagaut P et al (2001) Oxidation of dimethoxymethane in a jet-stirred reactor. Combust Flame 125:1106–1117

    Article  Google Scholar 

  • Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manage 50:2239–2249

    Article  Google Scholar 

  • Dryer F (1972) High temperature oxidation of carbon monoxide and methane in a turbulent flow reactor. Ph.D. thesis, Princeton University, Princeton, New Jersey

    Google Scholar 

  • Esarte C, Millera Á, Bilbao R et al (2009) Gas and soot products formed in the pyrolysis of acetylene-ethanol blends under flow reactor conditions. Fuel Process Technol 90:496–503

    Article  Google Scholar 

  • Esarte C, Millera Á, Bilbao R et al (2010) Effect of ethanol, dimethylether, and oxygen, when mixed with acetylene, on the formation of soot and gas products. Ind Eng Chem Res 49:6772–6779

    Article  Google Scholar 

  • Esarte C, Peg MA, Ruiz MP et al (2011a) Pyrolysis of ethanol: gas and soot products formed. Ind Eng Chem Res 50:4412–4419

    Article  Google Scholar 

  • Esarte C, Callejas A, Millera Á et al (2011b) Influence of the concentration of ethanol and the interaction of compounds in the pyrolysis of acetylene and ethanol mixtures. Fuel 90:844–849

    Article  Google Scholar 

  • Esarte C, Abián M, Millera Á et al (2012) Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. Energy 43:37–46

    Article  Google Scholar 

  • Frassoldati A, Cuoci A, Faravelli T et al (2010) An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust Flame 157:2–16

    Article  Google Scholar 

  • Frassoldati A, Grana R, Faravelli T et al (2012) Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust Flame 159:2295–2311

    Article  Google Scholar 

  • Glarborg P, Alzueta MU, Dam-Johansen K et al (1998) Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combust Flame 115:1–27

    Article  Google Scholar 

  • Held AM, Manthorne KC, Pacey PD et al (1977) Individual rate constants of methyl radical reactions in pyrolysis of dimethyl ether. Can J Chem 55:4128–4134

    Article  Google Scholar 

  • Held TJ, Dryer FL (1998) A comprehensive mechanism for methanol oxidation. Int J Chem Kinet 30:805–830

    Article  Google Scholar 

  • Jazbec M, Haynes BS (2005) Kinetic study of methanol oxidation and the effect of NOx at low oxygen concentration. In: 5th Asia-Pacific conference on combustion. The University of Adelaide, Adelaide, Australia

    Google Scholar 

  • Kristensen PG (1997) Nitrogen burnout chemistry. Ph.D. thesis, Technical University of Denmark, Denmark

    Google Scholar 

  • Lee JC, Yetter RA, Dryer FL et al (2000) Simulation and analysis of laminar flow reactors. Combust Sci Technol 159:199–212

    Article  Google Scholar 

  • Lefkowitz JK, Heyne JS, Won SH, Dooley S, Kim HH, Haas FM, Jahangirian S, Dryer FL, Ju Y (2012) A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame. Combust Flame 159:968–978

    Article  Google Scholar 

  • Levenspiel O (1999) Chemical reaction Engineering, 3rd edn. Wiley, New York

    Google Scholar 

  • Lu X, Ma J, Ji L et al (2007) Experimental study on the combustion characteristics and emissions of biodiesel fueled compression ignition engines with premixed dimethoxymethane. Energy Fuel 21:3144–3150

    Article  Google Scholar 

  • Maricq MM, Chase RE, Podsiadlik DH et al (1998) The effect of dimethoxy methane additive on diesel vehicle particulate emissions. SAE Technical papers nº 982572

    Google Scholar 

  • Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kinet 31:183–220

    Article  Google Scholar 

  • Molera MJ, García-Domínguez JA, Santiuste JM (1974a) Slow gas-phase oxidation of methylal. An Quím 70:579–586

    Google Scholar 

  • Molera MJ, García-Domínguez JA, Santiuste JM (1974b) Cool flames and explosions in methylal oxidation. An Quím 70:764–767

    Google Scholar 

  • Monge F, Millera A, Bilbao R, Alzueta MU (2012) Oxidation of dimethoxymethane in a flow reactor. WIP Poster. In: 34th international symposium on combustion

    Google Scholar 

  • Moss JT, Berkowitz AM, Oehlschlaeger MA et al (2008) An experimental and kinetic modeling study of the oxidation of the four isomers of butanol. J Phys Chem A 112:10843–10855

    Article  Google Scholar 

  • Nakamura M, Koda S, Akita K (1982) Sooting behavior and radiation in methanol/benzene/air diffusion flames. Proc Combust Inst 19:1395–1401

    Google Scholar 

  • Norton TS, Dryer FL (1989) Some new observations on methanol oxidation chemistry. Combust Sci Technol 63:107–129

    Article  Google Scholar 

  • Norton TS, Dryer FL (1990) Toward a comprehensive mechanism for methanol pyrolysis. Int J Chem Kinet 22:219–241

    Article  Google Scholar 

  • Norton TS, Dryer FL (1991) The flow reactor oxidation of C1–C4 alcohols and MTBE. Proc Combust Inst 23:179–185

    Google Scholar 

  • Norton TS, Dryer FL (1992) An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor. Int J Chem Kinet 24:319–344

    Article  Google Scholar 

  • Pacey PD (1975) Initial-stages of pyrolysis of dimethyl ether. Can J Chem 53:2742–2747

    Article  Google Scholar 

  • Park JK (2006) Modelling study of the effect of chemical additives on soot precursors reduction. Int J Automot Technol 7:501–508

    Google Scholar 

  • Park SW (2009) Numerical study on optimal operating conditions of homogeneous charge compression ignition engines fueled with dimethyl ether and n-heptane. Energy Fuel 23:3909–3918

    Article  Google Scholar 

  • Pepiot-Desjardins P, Pitsch H, Malhotra R et al (2008) Structural group analysis for soot reduction tendency of oxygenated fuels. Combust Flame 154:191–205

    Article  Google Scholar 

  • Rasmussen CL, Rasmussen AE, Glarborg P (2008a) Sensitizing effects of NOx on CH4 oxidation at high temperature. Combust Flame 154:529–545

    Article  Google Scholar 

  • Rasmussen CL, Wassard KH, Dam-Johansen K et al (2008b) Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction. Int J Chem Kinet 40:423–441

    Article  Google Scholar 

  • Ribeiro NM, Pinto AC, Quintella CM et al (2007) The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energy Fuel 21:2433–2445

    Article  Google Scholar 

  • Santamaría JM, Herguido J, Menéndez MA, Monzón A (2002) Ingeniería de reactores. Síntesis, Madrid

    Google Scholar 

  • Sarathy SM, Thomson MJ, Togbé C et al (2009) An experimental and kinetic modeling study of n-butanol combustion. Combust Flame 156:852–864

    Article  Google Scholar 

  • Sayin C (2010) Engine performance and exhaust gas emissions of methanol and ethanol-diesel blends. Fuel 89:3410–3415

    Article  Google Scholar 

  • Sinha A, Thomson MJ (2004) The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures. Combust Flame 136:548–556

    Article  Google Scholar 

  • Sirman MB, Owens EC, Whitney KA (2000) Emissions comparison of alternative fuels in an advanced automotive diesel engine. SAE Technical papers nº 2000-01-2048

    Google Scholar 

  • Sison K, Ladommatos N, Song HW et al (2007) Soot generation of diesel fuels with substantial amounts of oxygen-bearing compounds added. Fuel 86:345–352

    Article  Google Scholar 

  • Smith SR, Gordon AS (1956) Studies of diffusion flames. II. Diffusion flames of some simple alcohols. J Phys Chem 60:1059–1062

    Article  Google Scholar 

  • Song KH, Nag P, Litzinger TA et al (2003) Effects of oxygenated additives on aromatic species in fuel-rich, premixed ethane combustion: a modeling study. Combust Flame 135:341–349

    Article  Google Scholar 

  • Tamm S, Ingelsten HH, Skoglundh M et al (2009) The influence of gas phase reactions on the design criteria for catalysts for lean NOx reduction with dimethyl ether. Appl Catal B-Environ 91:234–241

    Article  Google Scholar 

  • Trenwith AB (1975) Thermal decomposition of isopropanol. J Chem Soc, Faraday Trans 1 71:2405–2412

    Google Scholar 

  • Westbrook CK, Dryer FL (1979) Comprehensive mechanism for methanol oxidation. Combust Sci Technol 20:125–140

    Article  Google Scholar 

  • Wiesenthal T, Leduc G, Christidis P et al (2009) Biofuel support policies in Europe: Lessons learnt for the long way ahead. Renew Sustain Energy Rev 13:789–800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María U. Alzueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Monge, F., Aranda, V., Millera, A., Bilbao, R., Alzueta, M.U. (2013). Tubular Flow Reactors. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics