Skip to main content

Speciation in Shock Tubes

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A shock tube is a device in which a shock wave is normally formed by the rupture of a diaphragm, which divides a gas at high pressure from a test section containing the species of interest at a lower pressure. The shock wave brings the test gas virtually instantaneously to a known high temperature and pressure, maintains that condition for a time and then is supplanted by an expansion wave which cools the sample rapidly. During this time, the test gas can be studied by continuous sampling, for example to a time-of-flight mass spectrometer or alternatively sampled at the end of process by gas chromatography or other appropriate analytical techniques. Here, we discuss both methodologies and show with examples the benefits of both approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bockhorn H, Fetting F, Wenz HW (1983) Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames. Ber Bunsen Ges Phys Chem 87:1067–1073

    Article  Google Scholar 

  • Bradley JN, Kistiakowsky GB (1961) Shock wave studies by mass spectrometry. I. Thermal decomposition of nitrous oxide. J Chem Phys 35:256–263

    Article  Google Scholar 

  • Comandini A, Brezinsky K (2012) Radical/pi-bond addition between o-Benzyne and cyclic C-5 hydrocarbons. J Phys Chem A 116:1183–1190

    Article  Google Scholar 

  • Davidson DF, Hong Z, Pilla GL et al (2011) Multi-species time-history measurements during n-dodecane oxidation behind reflected shock waves. Proc Combust Inst 33:151–157

    Article  Google Scholar 

  • Dürrstein SH, Olzmann M, Aguilera-Iparraguirre J et al (2011a) The phenyl+phenyl reaction as pathway to benzynes: an experimental and theoretical study. Chem Phys Lett 513:20–26

    Article  Google Scholar 

  • Dürrstein SH, Aghsaee M, Jerig L et al (2011b) A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems. Rev Sci Instrum 82:084103

    Article  Google Scholar 

  • Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Combust Inst 23:1559–1566

    Google Scholar 

  • Frenklach M, Clary DW, Gardiner WC et al (1985) Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc Combust Inst 20:887–901

    Google Scholar 

  • Giri BR, Tranter RS (2007) Dissociation of 1,1,1-trifluoroethane behind reflected shock waves: shock tube/time-of-flight mass spectrometry experiments. J Phys Chem A 111:1585–1592

    Article  Google Scholar 

  • Giri BR, Kiefer JH, Xu H et al (2008) An experimental and theoretical high temperature kinetic study of the thermal unimolecular dissociation of fluoroethane. Phys Chem Chem Phys 10:6266–6273

    Article  Google Scholar 

  • Heckmann E, Hippler H, Troe J (1996) High temperature reactions and thermodynamic properties of phenyl radicals. Proc Combust Inst 26:543–550

    Google Scholar 

  • Herzler J, Manion AJ, Tsang W (1997) Single-pulse shock tube studies of the decomposition of ethoxy compounds. J Phys Chem A 101:5494–5499

    Article  Google Scholar 

  • Hidaka Y, Shiba S, Takuma H, Suga M (1985) Thermal decomposition of ethane in shock waves. Int J Chem Kinet 17:441–453

    Article  Google Scholar 

  • Hidaka Y, Oki T, Kawano H, Higashihara T (1989) Thermal decomposition of methanol in shock waves. J Phys Chem 93:7134–7139

    Article  Google Scholar 

  • Kern RD, Singh HJ, Jhang Q (2001) Mass spectrometric methods for chemical kinetics in shock tubes. In: Ben-Dor G, Igra O, Lifshitz A (eds) Handbook of shock waves, vol 3. Academic Press, New York

    Google Scholar 

  • Lifshitz A, Ben Hamou H (1983) Thermal reactions of cyclic ethers at high temperatures. I. Pyrolysis of ethylene oxide behind reflected shocks. J Phys Chem 87:1782–1787

    Google Scholar 

  • Lifshitz A, Bauer SH, Resler EL (1963) Studies with a single pulse shock tube. The thermal cis → trans isomerization of 2-butene. J Chem Phys 38:2056–2063

    Article  Google Scholar 

  • Lifshitz A, Suslensky A, Tamburu C et al (2004) Thermal decomposition, isomerization and ring expansion in 2-methylindene. Single pulse shock tube and modeling study. J Phys Chem A 108:3430–3438

    Article  Google Scholar 

  • Lifshitz A, Tamaburu C, Dubnikova F (2009) Reactions of 1-naphtyl radicals with acetylene. Single-pulse shock tube experiments and quantum chemical calculations. Differences and similarities in the reaction with ethylene. J Phys Chem A 113:10446–10451

    Article  Google Scholar 

  • Miller JA, Klippenstein SJ (2003) The recombination of propargyl radicals and other reactions on a C6H6 potential. J Chem Phys A 39:7783–7799

    Article  Google Scholar 

  • Moulton DM (1964) Shock wave studies by time of flight mass spectrometry. Ph.D. thesis, Harvard University, Cambridge

    Google Scholar 

  • Rajakumar B, Reddy KPJ, Arunan E (2002) Uni-molecular HCl elimination from 1,2-dichloethane. J Phys Chem A 106:8366–8373

    Article  Google Scholar 

  • Simmie JM (2003) Detailed chemical kinetic models for the combustion of hydrocarbon fuels Prog. Energy Combust Sci 29:599–634

    Article  Google Scholar 

  • Simmie JM, Quiring WJ, Tschuikow-Roux E (1969) The thermal decomposition of perfluorocyclobutane in a single-pulse shock tube. J Phys Chem 73:3830–3833

    Article  Google Scholar 

  • Sivaramakrishnan R, Tranter RS, Brezinsky K (2006) High pressure pyrolysis of toluene. 1. Experiments and modeling of toluene decomposition. J Phys Chem A 110:9388–9399

    Article  Google Scholar 

  • Tranter RS (2013) unpublished work

    Google Scholar 

  • Tranter RS, Giri BR, Kiefer JH (2007) Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies. Rev Sci Instrum 78:034101

    Article  Google Scholar 

  • Tranter RS, Klippenstein SJ, Harding LB et al (2010) Experimental and theoretical investigation of the self-reaction of phenyl radicals. J Phys Chem A 114:8240–8261

    Article  Google Scholar 

  • Tranter RS, Lynch PT, Annesley CJ (2012) High temperautre sources of phenyl and benzyne radicals. 22nd international symposium Gas Kinet. University of Colorado at Boulder, Boulder, CO, 18–22 June 2012

    Google Scholar 

  • Tsang W, Lifshitz A (1999) Kinetic stability of 1,1,1-trifluoroethane. Int J Chem Kinet 30:621–628

    Article  Google Scholar 

  • Tsang W, Lifshitz A (2001) Single pulse shock tube. In: Ben-Dor G, Igra O, Lifshitz A (eds) Handbook of shock waves, vol 3. Academic Press, New York

    Google Scholar 

  • Voldner EC, Trass O (1980) Evaluation of thermal-boundary layer interaction in shock-tube sampling for kinetic-studies J Chem Phys 73:1601–1611

    Google Scholar 

  • Wang H, Frenklach M (1997) A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust Flame 110:173–221

    Article  Google Scholar 

  • Wu CH, Kern RD (1987) Shock tube study of allene pyrolysis. J Phys Chem 91:6291–6296

    Article  Google Scholar 

  • Xu C, Braun-Unkhoff M, Naumann C et al (2007) A shock tube investigation of H atom production from the thermal dissociation of ortho-benzyne radicals Proc. Combust Inst 31:231–239

    Article  Google Scholar 

  • Yang X, Kiefer JH, Tranter RS (2011) Thermal dissociation of ethylene glycol vinyl ether. Phys Chem Chem Phys 48:21288–21300

    Article  Google Scholar 

  • Yasunaga K, Kuraguchi Y, Hidaka Y et al (2008) Kinetic and modeling studies on ETBE pyrolysis behind reflected shock waves. Chem Phys Lett 451:192–197

    Article  Google Scholar 

  • Yasunaga K, Gillespie F, Simmie JM et al (2010) A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis. J Phys Chem A 114:9098–9109

    Article  Google Scholar 

  • Yasunaga K, Mikajiri T, Sarathy M et al (2012) A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combust Flame 159:2009–2027

    Article  Google Scholar 

  • Zhang X, Maccarone AT, Nimlos MR et al (2007) Unimolecular thermal fragmentation of ortho-benzyne J. Chem Phys 126:44312

    Article  Google Scholar 

Download references

Acknowledgments

RST gratefully acknowledges support from the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenji Yasunaga or Robert S. Tranter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Yasunaga, K., Tranter, R.S. (2013). Speciation in Shock Tubes. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics