Skip to main content

Shock Tube Studies of Combustion Relevant Elementary Chemical Reactions and Submechanisms

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

  • 2944 Accesses

Abstract

Shock tubes are vital experimental tools that are used to study high temperature gas-phase kinetics and shock tube research accounts for most of the high temperature experimental data relevant to combustion. Several shock tube techniques are briefly discussed and references to prior more detailed reviews supplied. The use of shock tube techniques to elucidate reaction rates and mechanisms for elementary unimolecular and bimolecular reactions is discussed. Particular attention is given to studies that provide fundamental data that can be extrapolated to systems that cannot be studied in isolated experiments. In this context, experiments on the dissociation and isomerization of fuel radicals, pyrolysis of saturated cyclic and heterocyclic molecules of importance in surrogate fuels and nontraditional fuels, and the role of resonantly stabilized radicals in formation of polycyclic aromatic hydrocarbons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge HK, Liu X, Lin MC, Melius CF (1991) Thermal unimolecular decomposition of 1,3,5-trioxane—Comparison of theory and experiment. Int J Chem Kinet 23:947–956

    Google Scholar 

  • Alkemade U, Homann KH (1989) Formation of C6H6 isomers by recombination of propynyl in the system sodium vapor propynylhalide. Z Phys Chem Neue Folge 161:19–34

    Google Scholar 

  • Anderson KB, Tranter RS, Tang W et al (2004a) Speciation of C6H6 isomers by gas chromatography-matrix isolation Fourier transform infrared spectroscopy-mass spectrometry. J Phys Chem A 108:3403–3405

    Google Scholar 

  • Anderson RS, Huang L, Iannone R et al (2004b) Carbon kinetic isotope effects in the gas phase reactions of light alkanes and ethene with the OH radical at 296 ± 4 K. J Phys Chem A 108:11537–11544

    Google Scholar 

  • Atkinson DB, Hudgens JW (1999) Rate coefficients for the propargyl radical self-reaction and oxygen addition reaction measured using ultraviolet cavity ring-down spectroscopy. J Phys Chem A 103:4242–4252

    Google Scholar 

  • Atkinson R (2003) Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos Chem Phys 3:2233–2307

    Google Scholar 

  • Atkinson R, Aschmann SM, Carter WPL et al (1982) Kinetics of the reactions of OH radicals with normal-alkanes at 299 ± 2 K. Int J Chem Kinet 14:781–788

    Google Scholar 

  • Awan IA, McGivern WS, Tsang W et al (2010) Decomposition and isomerization of 5-methylhex-1-yl radical. J Phys Chem A 114:7832–7846

    Google Scholar 

  • Awan IA, Burgess DR Jr, Tsang W et al (2011a) Shock tube study of the decomposition of cyclopentyl radicals. Proc Combust Inst 33:341–349

    Google Scholar 

  • Awan IA, Burgess J, Tsang W et al (2011b) Standard reactions for comparative rate studies: experiments on the dehydrochlorination reactions of 2-chloropropane, chlorocyclopentane, and chlorocyclohexane. Int J Chem Kinet. doi:10.1002/kin.20566

    MATH  Google Scholar 

  • Babushok V, Tsang W, Awan I et al (2001) Initial stages of heptane decomposition. Chem Phys Process Combust 198–201

    Google Scholar 

  • Ben-Dor G, Igra O, Elperin T et al (2001) Handbook of shock waves, vol 3. Academic Press, Burlington

    Google Scholar 

  • Bhaskaran KA, Roth P (2002) The shock tube as wave reactor for kinetic studies and material systems. Prog Energy Combust Sci 28:151–192

    Google Scholar 

  • Brezinsky K (1986) The high-temperature oxidation of aromatic hydrocarbons. Prog Energy Combust Sci 12:1–24

    Google Scholar 

  • Brown TC, King KD, Nguyen TT (1986) Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. J Phys Chem 90:419–424

    Google Scholar 

  • Burgess J, Manion JA (2011) Ab initio calculations and RRKM/master equation modeling of chloroalkanes → alkenes + HCl reactions for use in comparative rate studies. Int J Chem Kinet. doi:10.1002/kin.20565

    Google Scholar 

  • Cohen N (1991) Are reaction rate coefficients additive? revised transition state theory calculations for OH + alkane reactions. Int J Chem Kinet 23:397–417

    Google Scholar 

  • Comandini A (2011) Thesis: high pressure chemistry of phenyl radical reactions with actylene. University of Illinois, Chicago

    Google Scholar 

  • Comandini A, Brezinsky K (2011) Theoretical study of the formation of naphthalene from the radical/pi-bond addition between single-ring aromatic hydrocarbons. J Phys Chem A 115:5547–5559

    Google Scholar 

  • Comandini A, Brezinsky K (2012) Radical/pi-bond addition between o-benzyne and cyclic C(5) hydrocarbons. J Phys Chem A 116:1183–1190

    Google Scholar 

  • Comandini A, Malewicki T, Brezinsky K (2012) Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene. J Phys Chem A 116:2409−2434

    Google Scholar 

  • Culberston B (2009) Thesis: homogeneous and heterogeneous reaction rates for the reactions of carbon with carbon dioxide and water. University of Illinois, Chicago

    Google Scholar 

  • Culbertson B, Sivaramakrishnan R, Brezinsky K (2008) Elevated pressure thermal experiments and modeling studies on the water-gas shift reaction. J Propul Power 24:1085–1092

    Google Scholar 

  • Davidson DF, Hanson RK (1996) Real gas corrections in shock tube studies at high pressures. Isr J Chem 36:321–326

    Google Scholar 

  • Davidson DF, Hong Z, Pilla GL et al (2011) Multi-species time-history measurements during n-dodecane oxidation behind reflected shock waves. Proc Combust Inst 33:151–157

    Google Scholar 

  • Desain JD, Taatjes CA (2003) Infrared laser absorption measurements of the kinetics of propargyl radical self-reaction and the 193 nm photolysis of propyne. J Phys Chem A 107:4843–4850

    Google Scholar 

  • Duerrstein SH, Aghsaee M, Jerig L et al (2011a) A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems. Rev Sci Instrum 82:084103-1-084103/7

    Google Scholar 

  • Duerrstein SH, Olzmann M, Aguilera-Iparraguirre J et al (2011b) The phenyl + phenyl reaction as pathway to benzynes: an experimental and theoretical study. Chem Phys Lett 513:20–26

    Google Scholar 

  • Fahr A, Nayak A (2000) Kinetics and products of propargyl (C3H3) radical self- reactions and propargyl-methyl cross-combination reactions. Int J Chem Kinet 32:118–124

    Google Scholar 

  • Farooq A, Jeffries JB, Hanson RK (2009) Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 um. Appl Opt 48:6740–6753

    Google Scholar 

  • Fernandes RX, Hippler H, Olzmann M (2005) Determination of the rate coefficient for the C3H3 + C3H3 reaction at high temperatures by shock-tube investigations. Proc Combust Inst 30:1033–1038

    Google Scholar 

  • Fleming DG, Arseneau DJ, Sukhorukov O et al (2011) Kinetics of the reaction of the heaviest hydrogen atom with H(2), the (4)He mu + H(2) → (4)He mu H + H reaction: experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass. J Chem Phys 135:184310

    Google Scholar 

  • Gardiner WC, Walker BF, Wakefield CB (1981) Mathematical methods for modeling chemical reactions. In: Lifshitz A (ed) Shock waves in chemistry Marcel Dekker inc, Dekker, New York, pp 319–374

    Google Scholar 

  • Gaydon AG, Hurle IR (1963) The shock tube in high temperature chemical physics. Chapman and Hall Ltd, London

    Google Scholar 

  • Georgievskii Y, Miller JA, Klippenstein SJ (2007) Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Phys Chem Chem Phys 9:4259–4268

    Google Scholar 

  • Giri BR, Hippler H, Olzmann M et al (2003) The rate coefficient of the C3H3 + C3H3 reaction from UV absorption measurements after photolysis of dipropargyl oxalate. Phys Chem Chem Phys 5:4641–4646

    Google Scholar 

  • Giri BR, Bentz T, Hippler H et al (2009) Shock-tube study of the reactions of hydrogen atoms with benzene and phenyl radicals. Z Phys Chem Int J Res Phys Chem Chem Phys 223:539–549

    Google Scholar 

  • Gudiyella S, Malewicki T, Comandini A et al (2011) High pressure study of m-xylene oxidation. Combust Flame 158:687–704

    Google Scholar 

  • He YZ, Mallard WG, Tsang W (1988) Kinetics of hydrogen and hydroxyl radical attack on phenol at high-temperatures. J Phys Chem 92:2196–2201

    Google Scholar 

  • Hochgreb S, Dryer FL (1992) Decomposition of 1,3,5-trioxane at 700–800-K. J Phys Chem 96:295–297

    Google Scholar 

  • Hong Z, Davidson DF, Barbour EA et al (2011) A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption of H2O near 2.5 um. Proc Combust Inst 33:309–316

    Google Scholar 

  • Horn C, Roy K, Frank P et al (1998) Shock-tube study on the high-temperature pyrolysis of phenol. Symp (Int) Combust Proc 27:321–328

    Google Scholar 

  • Irdam EA, Kiefer JH (1990) The decomposition of 1,3,5-trioxane at very high-temperatures. Chem Phys Lett 166:491–494

    Google Scholar 

  • Kern RD, Zhang Q, Yao J et al (1998) Pyrolysis of cyclopentadiene: rates for initial C-H bond fission and the decomposition of c-C5H5. Symp (Int) Combust Proc 27:143–150

    Google Scholar 

  • Kern RD, Singh HJ, Jhang Q (2001) Mass spectrometric methods for chemical kinetics in shock tubes. In: Ben-Dor G, Igra O, and Lifshitz A (eds.). Handbook of shock waves, vol 3, Academic Press, New York, pp 77–105

    Google Scholar 

  • Kiefer JH (1981) The laser schlieren technique in shock tube kinetics. In: Lifshitz A (ed). Shock waves in chemistry, Marcel Dekker, New York, pp 219–277

    Google Scholar 

  • Kiefer JH, Buzyna LL, Dib A et al (2000) Observation and analysis of nonlinear vibrational relaxation of large molecules in shock waves. J Chem Phys 113:48–58

    Google Scholar 

  • Kiefer JH, Santhanam S, Srinivasan NK et al (2005) Dissociation, relaxation and incubation in the high-temperature pyrolysis RRKM of ethane, and a successful modeling. Proc Combust Inst 30:1129–1135

    Google Scholar 

  • Kiefer J, Gupte K, Harding L et al (2009) Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. J Phys Chem A 113:13570–13583

    Google Scholar 

  • Klopffer W, Frank R, Kohl EG et al (1986) Quantitative presentation of photochemical transformation processes in the troposphere. Chem Ztg 110:57–61

    Google Scholar 

  • Koffend JB, Cohen N (1996) Shock tube study of OH reactions with linear hydrocarbons near 1100 K. Int J Chem Kinet 28:79–87

    Google Scholar 

  • Krasnoperov LN, Michael JV (2004) High-temperature shock tube studies using multipass absorption: rate constant results for OH + CH3, OH + CH2, and the dissociation of CH3OH. J Phys Chem A 108:8317–8323

    Google Scholar 

  • Li H, Farooq A, Jeffries JB et al (2007) Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube. Appl Phys B: Lasers Opt 89:407–416

    Google Scholar 

  • Lifshitz A, Tamburu C, Shashua R (1997) Decomposition of 2-methylfuran. experimental and modeling study. J Phys Chem A 101:1018–1029

    Google Scholar 

  • Lifshitz A, Tamburu C, Shashua R (1998) Thermal decomposition of 2,5-dimethylfuran. experimental results and computer modeling. J Phys Chem A 102:10655–10670

    Google Scholar 

  • Lifshitz A, Suslensky A, Tamburu C (2000) Thermal reactions of 2,3-dihydrobenzofuran: experimental results and computer modeling. Proc Combust Inst 28:1733–1739

    Google Scholar 

  • Lifshitz A, Suslensky A, Tamburu C (2001) Thermal reactions of isodihydrobenzofuran: experimental results and computer modeling. J Phys Chem A 105:3148–3157

    Google Scholar 

  • Lifshitz A, Tamburu C, Suslensky A et al (2006a) Decomposition and isomerization of 1,2-benzisoxazole: single-pulse shock-tube experiments, quantum chemical and transition-state theory calculations. J Phys Chem A 110:11677–11683

    Google Scholar 

  • Lifshitz A, Tamburu C, Suslensky A et al (2006b) Decomposition of anthranil. single pulse shock-tube experiments, potential energy surfaces and multiwell transition-state calculations. the role of intersystem crossing. J Phys Chem A 110:8248–8258

    Google Scholar 

  • Lifshitz A, Tamburu C, Suslensky A et al (2006c) Thermal reactions of benzoxazole. single pulse shock tube experiments and quantum chemical calculations. J Phys Chem A 110:4607–4613

    Google Scholar 

  • Manley DK, McIlroy A, Taatjes CA (2008) Research needs for future internal combustion engines. Phys Today 61:47–52

    Google Scholar 

  • McGivern WS, Awan IA, Tsang W et al (2008) Isomerization and decomposition reactions in the pyrolysis of branched hydrocarbons: 4-Methyl-1-pentyl radical. J Phys Chem A 112:6908–6917

    Google Scholar 

  • Mertens JD, Kalitan DM, Barrett AB et al (2009) Determination of the rate of H + O2 + M → HO2 + M (M = N2, Ar, H2O) from ignition of syngas at practical conditions. Proc Combust Inst 32:295–303

    Google Scholar 

  • Michael JV (1992) Measurement of thermal rate constants by flash or laser photolysis in shock tubes: oxidations of hydrogen and deuterium. Prog Energy Combust Sci 18:327–347

    Google Scholar 

  • Michael JV, Lifshitz A (2001) Atomic resonance absorption spectroscopy with flash or laser photolysis in shock wave experiments. In: Ben-Dor G, Igra O, Elperin T et al (eds) Handbook of shock waves. Academic Press, New York

    Google Scholar 

  • Michael JV, Su MC, Sutherland JW et al (2002) Rate constants For H + O2 + M → HO2 + M in seven bath gases. J Phys Chem A 106:5297–5313

    Google Scholar 

  • Michael JV, Su MC, Sutherland JW (2004) New rate constants for D + H2 and H + D2 between 1150 and 2100 K. J Phys Chem A 108:432–437

    Google Scholar 

  • Mielke SL, Peterson KA, Schwenke DW et al (2003) H + H2 thermal reaction: a convergence of theory and experiment. Phys Rev Lett 91:063201-1-063201/4

    Google Scholar 

  • Miller CH, Tang W, Tranter RS et al (2006) Shock tube pyrolysis of 1,2,4,5-hexatetraene. J Phys Chem A 110:3605–3613

    Google Scholar 

  • Miller JA, Klippenstein SJ (2003) The recombination of propargyl radicals and other reactions on a C6H6 potential. J Phys Chem A 107:7783–7799

    Google Scholar 

  • Morter CL, Farhat SK, Adamson JD et al (1994) Rate-constant measurement of the recombination reaction C3H3 + C3H3. J Phys Chem 98:7029–7035

    Google Scholar 

  • Oehlschlaeger MA, Davidson DF, Hanson RK (2006) Experimental investigation of toluene + H → benzyl + H2 at high temperatures. J Phys Chem A 110:9867–9873

    Google Scholar 

  • Peukert S, Naumann C, Braun-Unkhoff M et al (2011) Formation of H-atoms in the pyrolysis of cyclohexane and 1-hexene: a shock tube and modeling study. Int J Chem Kinet 43:107–119

    Google Scholar 

  • Pyun SH, Cho J, Davidson DF et al (2011) Interference-free mid-IR laser absorption detection of methane. Meas Sci Technol 22:025303-1-025303/9

    Google Scholar 

  • Rajakumar B, Reddy KPJ, Arunan E (2003) Thermal decomposition of 2-fluoroethanol: single pulse shock tube and ab initio studies. J Phys Chem A 107:9782–9793

    Google Scholar 

  • Rasmussen CL, Skjoth-Rasmussen MS, Jensen AD et al (2005) Propargyl recombination: estimation of the high temperature, low pressure rate constant from flame measurements. Proc Combust Inst 30:1023–1031

    Google Scholar 

  • Roy K, Horn C, Frank P et al (1998) High-temperature investigations on the pyrolysis of cyclopentadiene. Symp (Int) Combust Proc 27:329–336

    Google Scholar 

  • Santhanam S, Kiefer JH, Tranter RS et al (2003) A shock tube, laser-schlieren study of the pyrolysis of isobutene: relaxation, incubation, and dissociation rates. Int J Chem Kinet 35:381–390

    Google Scholar 

  • Saxena S, Kiefer JH, Tranter RS (2007) Relaxation, incubation, and dissociation in CO2. J Phys Chem A 111:3884–3890

    Google Scholar 

  • Scherer S, Just T, Frank P (2000) High-temperature investigations on pyrolytic reactions of propargyl radicals. Proc Combust Inst 28:1511–1518

    Google Scholar 

  • Shafir EV, Slagle IR, Knyazev VA (2003) Kinetics and products of the self-reaction of propargyl radicals. J Phys Chem A 107:8893–8903

    Google Scholar 

  • Simmie JM, Curran HJ (2009) Formation enthalpies and bond dissociationenergies of alkylfurans. The strongest C-X bonds known? J Phys Chem A 113:5128–5137

    Google Scholar 

  • Simmie JM, Metcalfe WK (2011) Ab initio study of the decomposition of 2,5-dimethylfuran. J Phys Chem A 115:8877–8888

    Google Scholar 

  • Sirjean B, Glaude PA, Ruiz-Lopez MF et al (2006) Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. J Phys Chem A 110:12693–12704

    Google Scholar 

  • Sivaramakrishnan R, Michael JV (2009a) Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme. J Phys Chem A 113:5047–5060

    Google Scholar 

  • Sivaramakrishnan R, Michael JV (2009b) Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combust Flame 156:1126–1134

    Google Scholar 

  • Sivaramakrishnan R, Michael JV (2011) Pyrolysis of C6D5CH3: rate constants and branching ratios in the high-temperature thermal decomposition of toluene. Proc Combust Inst 33:225–232

    Google Scholar 

  • Sivaramakrishnan R, Srinivasan NK, Su MC et al (2009) High temperature rate constants for OH + alkanes. Proc Combust Inst 32:107–114

    Google Scholar 

  • Sivaramakrishnan R, Michael JV, Klippenstein SJ (2010) Direct observation of roaming radicals in the thermal decomposition of acetaldehyde. J Phys Chem A 114:755–764

    Google Scholar 

  • Sivaramakrishnan R, Michael JV, Wagner AF et al (2011a) Roaming radicals in the thermal decomposition of dimethyl ether: experiment and theory. Combust Flame 158:618–632

    Google Scholar 

  • Sivaramakrishnan R, Su MC, Michael JV et al (2011b) Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel. J Phys Chem A 115:3366–3379

    Google Scholar 

  • Sivaramakrishnan R, Su MC, Michael JV (2011c) H- and D-atom formation from the pyrolysis of C6H5CH2Br and C6H5CD2Br: implications for high-temperature benzyl decomposition. Proc Combust Inst 33:243–250

    Google Scholar 

  • Srinivasan NK, Kiefer JH, Tranter RS (2003) Dissociation, relaxation, and incubation in the pyrolysis of neopentane: heat of formation for tert-butyl radical. J Phys Chem A 107:1532–1539

    Google Scholar 

  • Srinivasan NK, Su MC, Sutherland JW et al (2005) Reflected shock tube studies of high-temperature rate constants for OH + CH4 → CH3 + H2O and CH3 + NO2 → CH3O + NO. J Phys Chem A 109:1857–1863

    Google Scholar 

  • Srinivasan NK, Su MC, Michael JV (2007a) High-temperature rate constants for CH3OH + Kr → products, OH + CH3OH → products, OH + (CH3)(2)CO → CH2COCH3 + H2O, and OH + CH3 → CH2 + H2O. J Phys Chem A 111:3951–3958

    Google Scholar 

  • Srinivasan NK, Su MC, Michael JV (2007b) Reflected shock tube studies of high-temperature rate constants for OH + C2H2 and OH + C2H4. Phys Chem Chem Phys 9:4155–4163

    Google Scholar 

  • Suits AG (2008) Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc Chem Res 41:873–881

    Google Scholar 

  • Tang W, Tranter RS, Brezinsky K (2005) Isomeric product distributions from the self-reaction of propargyl radicals. J Phys Chem A 109:6056–6065

    Google Scholar 

  • Townsend D, Lahankar SA, Lee SK et al (2004) The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–1161

    Google Scholar 

  • Tranter RS, Sivaramakrishnan R, Srinivasan N et al (2001) Calibration of reaction temperatures in a very high pressure shock tube using chemical thermometers. Int J Chem Kinet 33:722–731

    Google Scholar 

  • Tranter RS, Tang W, Anderson KB et al (2004) Shock tube study of thermal rearrangement of 1,5-hexadiyne over wide temperature and pressure regime. J Phys Chem A 108:3406–3415

    Google Scholar 

  • Tranter RS, Raman A, Sivaramakrishnan R et al (2005) Ethane oxidation and pyrolysis from 5 bar to 1000 bar: experiments and simulation. Int J Chem Kinet 37:306–331

    Google Scholar 

  • Tranter RS, Giri BR, Kiefer JH (2007) Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies. Rev Sci Instrum 78:034101

    Google Scholar 

  • Tranter RS, Klippenstein SJ, Harding LB et al (2010) Experimental and theoretical investigation of the self-reaction of phenyl radicals. J Phys Chem A 114:8240–8261

    Google Scholar 

  • Tranter RS, Yang X, Kiefer JH (2011) Dissociation of C3H3I and rates for C3H3 combination at high temperatures. Proc Combust Inst 33:259–265

    Google Scholar 

  • Tsang W (1978) Thermal-stability of cyclohexane and 1-hexene. Int J Chem Kinet 10:1119–1138

    Google Scholar 

  • Tsang W (1981) Comparative-rate single-pulse shock tube studies on the thermal stability of polyatomic molecules. In: Lifshitz A (ed) Shock waves in chemistry. Marcel Dekker Inc., New York

    Google Scholar 

  • Tsang W, Walker JA, Manion JA (1998) Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symp (Int) Combust Proc 27:135–142

    Google Scholar 

  • Tsang W, Walker JA, Manion JA (2007) The decomposition of normal hexyl radicals. Proc Combust Inst 31:141–148

    Google Scholar 

  • Tsang W, McGivern WS, Manion JA (2009) Multichannel decomposition and isomerization of octyl radicals. Proc Combust Inst 32:131–138

    Google Scholar 

  • Vasu SS, Davidson DF, Hanson RK et al (2010a) Measurements of the reaction of OH with n-butanol at high-temperatures. Chem Phys Lett 497:26–29

    Google Scholar 

  • Vasu SS, Hong ZK, Davidson DF et al (2010b) Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene. J Phys Chem A 114:11529–11537

    Google Scholar 

  • Vasu SS, Davidson DF, Hanson RK (2011a) Shock tube study of syngas ignition in rich CO2 mixtures and determination of the rate of H + O2 + CO2 → HO2 + CO2. Energy Fuels 25:990–997

    Google Scholar 

  • Vasu SS, Huynh LK, Davidson DF et al (2011b) Reactions of OH with butene isomers: measurements of the overall rates and a theoretical study. J Phys Chem A 115:2549–2556

    Google Scholar 

  • Vasudevan V, Davidson DF, Hanson RK et al (2007) High-temperature measurements of the rates of the reactions CH2O + Ar → products and CH2O + O-2 → products. Proc Combust Inst 31:175–183

    Google Scholar 

  • Vasudevan V, Cook RD, Hanson RK et al (2008) High-temperature shock tube study of the reactions CH3 + OH → products and CH3OH + Ar → products. Int J Chem Kinet 40:488–495

    Google Scholar 

  • Wilson EW, Hamilton WA, Kennington HR et al (2006) Measurement and estimation of rate constants for the reactions of hydroxyl radical with several alkanes and cycloalkanes. J Phys Chem A 110:3593–3604

    Google Scholar 

  • Wu CH, Singh HJ, Kern RD (1987) Pyrolysis of acetylene behind reflected shock-waves. Int J Chem Kinet 19:975–996

    Google Scholar 

  • Wu XS, Daniel R, Tian GH et al (2011) Dual-injection: the flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends. Appl Energy 88:2305–2314

    Google Scholar 

  • Yang X, Goldsmith CF, Tranter RS (2009) Decomposition and vibrational relaxation in CH3I and self-reaction of CH3 radicals. J Phys Chem A 113:8307–8317

    Google Scholar 

  • Yang X, Jasper AW, Giri BR et al (2011) A shock tube and theoretical study on the pyrolysis of 1,4-dioxane. Phys Chem Chem Phys 13:3686–3700

    Google Scholar 

  • Yasunaga K, Kubo S, Hoshikawa H et al (2008) Shock-tube and modeling study of acetaldehyde pyrolysis and oxidation. Int J Chem Kinet 40:73–102

    Google Scholar 

  • Yasunaga K, Gillespie F, Simmie JM et al (2010) A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation. J Phys Chem A 114:9098–9109

    Google Scholar 

  • Zhong S, Daniel R, Xu H et al (2010) Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy Fuels 24:2891–2899

    Google Scholar 

Download references

Acknowledgments

RST gratefully acknowledges support from Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under contract number DE-AC02-06CH11357.

We are grateful to J. A. Manion for providing Fig. 24.1 and R. Sivaramakrishnan and J. V. Michael for Fig. 24.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Tranter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tranter, R.S., Brezinsky, K. (2013). Shock Tube Studies of Combustion Relevant Elementary Chemical Reactions and Submechanisms. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics