Skip to main content

An Advanced Multi-Sectional Method for Particulate Matter Modeling in Flames

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

An advanced multi-sectional approach for modeling the gas-to-particle process in flames is presented. It follows the chemical evolution and the internal structure of particles formed in flames, fully coupled with the main pyrolysis and oxidation of the fuel. The multi-sectional method is included in a detailed mechanism of hydrocarbon pyrolysis and oxidation which considers the detailed formation of important gaseous species such as acetylene, benzene, and polycyclic aromatic hydrocarbons (PAHs); the lumped molecular growth of aromatics and particle inception; and the lumped particle growth and oxidation. The complete model is tested without any adjustments to the scheme on premixed and non-premixed flames of various hydrocarbons at atmospheric pressure. Predictions are compared with experimental data on gas-phase species concentrations, particle volume fractions, H/C and sizes in laminar premixed and in co-flowing non-premixed flames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfè M, Apicella B, Barbella R et al (2009) Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proc Combust Inst 32:697–704

    Article  Google Scholar 

  • Apicella B, Ciajolo A, Barella R et al (2003) Size exclusion chromatography of particulate produced in fuel-rich combustion of different fuels. Energy Fuels 17:565–570

    Article  Google Scholar 

  • Ciajolo A, D’Anna A, Barbella R et al (1996) The effect of temperature on soot inception in premixed ethylene flames. Symp (Int) Combust 26:2327–2333

    Google Scholar 

  • Ciajolo A, Barbella R, Tregrossi A et al (1998) Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame. Symp (Int) Combust 27:1481–1487

    Google Scholar 

  • D’Alessio A, D’Anna A, Gambi G et al (1998) The spectroscopic characterization of UV absorbing nanoparticles in fuel rich soot forming flames. J Aerosol Sci 29:397–409

    Article  Google Scholar 

  • D’Alessio A, Barone AC, Cau R et al (2005) Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 nm to 10 nm. Proc Combust Inst 30:2595–2603

    Article  Google Scholar 

  • D’Anna A (2009a) Combustion-formed nanoparticles. Proc Combust Inst 32:593–613

    Article  Google Scholar 

  • D’Anna A (2009b) Particle inception and growth: experimental evidences and a modelling attempt. In: Bockhorn H, D’Anna A, Sarofim AF, Wang H (eds) Combustion generated fine carbonaceous particles. Karlsruhe University Press, Karlsruhe, pp 289–320

    Google Scholar 

  • D’Anna A, Kent JH (2008) A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels. Combust Flame 152:573–587

    Article  Google Scholar 

  • D’Anna A, Sirignano M, Kent JH (2010) A model of particle nucleation in premixed ethylene flames. Combust Flame 157:2106–2115

    Article  Google Scholar 

  • Dobbins RA, Fletcher RA, Chang H-C (1998) The evolution of soot precursor particles in a diffusion flame. Combust Flame 115:285–298

    Article  Google Scholar 

  • Dworkin SB, Zhang Q, Thomson MJ et al (2011) Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust Flame 158:1682–1695

    Article  Google Scholar 

  • Echavarria CA, Jaramillo IC, Sarofim AF et al (2011) Studies of soot oxidation and fragmentation in a two-stage burner under fuel-lean and fuel-rich conditions. Proc Combust Inst 33:659–666

    Article  Google Scholar 

  • Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Symp (Int) Combust 23:1559–1566

    Google Scholar 

  • Frenklach M, Wang H (1994) Detailed mechanism and modeling of soot particle formation. In: Bockhorn H (ed) Soot formation in combustion: mechanisms and models, Springer series in chemical physics 59. Springer-Verlag, Heidelberg, pp 165–192

    Google Scholar 

  • Hamaker HC (1937) The London–van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • Homann K-H (1998) Fullerenes and soot formation new pathways to large particles in flames. Angew Chem Int Ed 37:2434–2451

    Article  Google Scholar 

  • Joutsenoja T, D’Anna A, D’Alessio A et al (2001) Ultraviolet absorption spectra of carbon dioxide and oxygen at elevated temperatures. Appl Spect 55:130–135

    Article  Google Scholar 

  • Kazakov A, Frenklach M (1998) Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combust Flame 114:484–510

    Article  Google Scholar 

  • Marinov NM, Pitz WJ, Westbrook CK, Castaldi MJ, Senkan SM (1996) Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust Sci Technol 116–117:211–287

    Article  Google Scholar 

  • Mauss F, Netzell K, Marchal C et al (2009) Modeling the soot particle size distribution functions using a detailed kinetic soot model and a sectional method. In: Bockhorn H, D’Anna A, Sarofim AF, Wang H (eds) Combustion generated fine carbonaceous particles. Karlsruhe University Press, Karlsruhe, pp 465–482

    Google Scholar 

  • Miller JA, Melius CF (1992) Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust Flame 91:21–39

    Article  Google Scholar 

  • Mueller ME, Blanquart G, Pitsch H (2011) Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames. Proc Combust Inst 33:667–674

    Article  Google Scholar 

  • Neoh KG, Howard JB, Sarofim AF (1985) Effect of oxidation on the of soot. Symp (Int) Combust 20:951–957

    Google Scholar 

  • Richter H, Granata S, Green WH et al (2005) Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc Combust Inst 30:1397–1405

    Article  Google Scholar 

  • Russo C, Alfè M, Rouzaud J-N et al (2013) Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proc Combust Inst 34:1885–1892

    Google Scholar 

  • Santoro RJ, Semerjian HG, Dobbins RA (1983) Soot particle measurements in diffusion flames. Combust Flame 51:203–218

    Article  Google Scholar 

  • Santoro RJ, Semerjian HG (1984) Soot formation in diffusion flames: flow rate, fuel species, and temperature effects. Symp (Int) Combust 20:997–1006

    Google Scholar 

  • Santoro RJ, Yeh TT, Horvath JJ et al (1987) The transport and growth of soot particles in laminar diffusion flames. Combust Sci Technol 53:89–115

    Article  Google Scholar 

  • Sgro LA, Barone AC, Commodo M et al (2009) Measurement of nanoparticles of organic carbon in non-sooting flame conditions. Proc Combust Inst 32:689–696

    Article  Google Scholar 

  • Sirignano M, Kent JH, D’Anna A (2010) Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles. Combust Flame 157:1211–1219

    Article  Google Scholar 

  • Sirignano M, Alfè M, Tregrossi A et al (2011) Experimental and modeling study on the molecular weight distribution and properties of carbon particles in premixed sooting flames. Proc Combust Inst 33:633–640

    Article  Google Scholar 

  • Smith GP, Golden DM, Frenklach M et al (2013). http://wwwmeberkeleyedu/gri_mech/

  • Smooke MD, McEnally CS, Pfefferle LD (1999) Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust Flame 117:117–139

    Article  Google Scholar 

  • Smyth KC, Miller JH, Dorfman RC et al (1985) Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Combust Flame 62:157–181

    Article  Google Scholar 

  • Xu F, El-Leathy AM, Kim CH et al (2003) Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure. Combust Flame 132:43–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D’Anna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

D’Anna, A., Sirignano, M. (2013). An Advanced Multi-Sectional Method for Particulate Matter Modeling in Flames. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics