Laser Diagnostics for Selective and Quantitative Measurement of PAHs and Soot

  • Xavier Mercier
  • Alessandro Faccinetto
  • Pascale Desgroux
Part of the Green Energy and Technology book series (GREEN)


Optical diagnostics are complementary techniques to conventional analytical methods of polycyclic aromatic hydrocarbons (PAH) and soot. They allow the selective and quantitative measurements of PAH concentrations and the determination of the soot volume fraction (\( f_{V} \)) in combustion processes. Due to their complex spectroscopy, selective detection of PAH requires a priori molecular cooling obtained by molecular beam generation strategies. The associated techniques are single or multiphoton ionisation coupled with time-of-flight mass spectrometry (PI/TOF-MS) and jet-cooled laser induced fluorescence (jet-cooled LIF). PI/TOF-MS also allows identifying PAH species adsorbed on soot surface. Laser induced incandescence (LII) and absorption-based techniques are currently used to measure \( f_{V} \). This chapter details the main principles of these relevant spectroscopic techniques: jet-cooled LIF single and multiphoton ionisation coupled with time-of-flight mass spectrometry, laser induced incandescence and soot desorption methods.


Laser Induce Fluorescence Soot Particle Premix Flame Light Extinction Multiphoton Ionisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abid AD, Heinz N, Tolmachoff ED et al (2008) On evolution of particle size distribution functions of incipient soot in premixed ethylene-oxygen-argon flames. Combust Flame 154(4):775–788CrossRefGoogle Scholar
  2. Alfè M, Apicella B, Tregrossi A et al (2008) Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon 46(15):2059–2066CrossRefGoogle Scholar
  3. Apicella B, Carpentieri A, Alfè M et al (2007) Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proc Combust Inst 31(1):547–553CrossRefGoogle Scholar
  4. Arana CP, Pontoni M, Sen S et al (2004) Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames. Combust Flame 138(4):362–372CrossRefGoogle Scholar
  5. Ashkenas H, Sherman FS (1966) In: JH de Leeuw (ed) 4th International symposium on rarefied gas dynamics, vol 2. New York Google Scholar
  6. Behlen FM, McDonald DB, Sethuraman V et al (1981) Fluorescence spectroscopy of cold and warm naphthalene molecules: Some new vibrational assignments. J Chem Phys 75(12):5685–5693CrossRefGoogle Scholar
  7. Beijerinck HCW, Verster NF (1981) Absolute intensities and perpendicular temperatures of supersonic beams of polyatomic gases. Physica 111:327–352CrossRefGoogle Scholar
  8. Bengtsson P-E, Aldén M (1995) Soot-visualization strategies using laser techniques. Appl Phys B 60(1):51–59CrossRefGoogle Scholar
  9. Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules, 2nd edn. Academic Press, New YorkGoogle Scholar
  10. Birks JB (1970) Photophysics of aromatic molecules, 1st edn. Wiley, LondonGoogle Scholar
  11. Bladh H, Bengtsson P-E, Delhay J et al (2006) Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration. Appl Phys B 83:423–433CrossRefGoogle Scholar
  12. Bladh H, Bengtsson PE (2004) Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model. Appl Phys B 78(2):241–248CrossRefGoogle Scholar
  13. Bladh H, Johnsson J, Bengtsson PE (2008) On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl Phys B 90(1):109–125CrossRefGoogle Scholar
  14. Bladh H, Johnsson J, Olofsson NE et al (2011) Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame. Proc Combust Inst 33(1):641–648CrossRefGoogle Scholar
  15. Boesl U (2000) Laser mass spectrometry for environmental and industrial chemical trace analysis. J Mass Spectrom 35(3):289–304CrossRefGoogle Scholar
  16. Bond T, Bergstrom R (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67CrossRefGoogle Scholar
  17. Boyd R (2003) Nonlinear optics. 2nd edn., Academic Press, NewYorkGoogle Scholar
  18. Cignoli F, Zizak G, Benecchi S et al. (1992) Atlas of fluorescence of spectra of aromatic hydrocarbons, Editorial group and Graphic design: S. De Iuliis, D. Ferretti Google Scholar
  19. Cléon G, Amodeo T, Faccinetto A et al (2011) Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame. Appl Phys B 104(2):297–305CrossRefGoogle Scholar
  20. Coe DS, Haynes BS, Steinfeld JI (1981) Identification of a source of argon-ion-laser excited fluorescence in sooting flames. Combust Flame 43:211–214CrossRefGoogle Scholar
  21. Dalzell WH, Sarofim AF (1969) Optical constants of soot and their application to heat-flux calculations. J Heat Transfer 91(1):100–104CrossRefGoogle Scholar
  22. Dasch CJ (1992) One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl Opt 31:1146–1152CrossRefGoogle Scholar
  23. Daun KJ, Thomson KA, Liu F et al (2006) Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl Opt 45:4638–4646CrossRefGoogle Scholar
  24. De Iuliis S, Barbini M, Benecchi S et al (1998) Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combust Flame 115(1–2):253–261CrossRefGoogle Scholar
  25. Delhay J, Bouvier Y, Therssen E et al (2005) 2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements. Appl Phys B 81:181–186CrossRefGoogle Scholar
  26. Delhay J, Desgroux P, Therssen E et al (2009) Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence. Appl Phys B 95(4):825–838CrossRefGoogle Scholar
  27. Desgroux P, Mercier X, Lefort B et al (2008) Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation. Combust Flame 155(1–2):289–301CrossRefGoogle Scholar
  28. Desgroux P, Mercier X, Thomson KA (2013) Study of the formation of soot and its precursors in flames using optical diagnostics. Proc Combust Inst 34(1):1713–1738CrossRefGoogle Scholar
  29. Dias R (1987) Handbook of Polycyclic Hydrocarbons. Elsevier, Amsterdam, data available on NIST online database at
  30. Dobbins RA, Fletcher RA, Chang HC (1998) The evolution of soot precursor particles in a diffusion flame. Combust Flame 115(3):285–298CrossRefGoogle Scholar
  31. Eckbreth AC (1977) Effects of laser-modulated particulate incandescence on Raman scattering diagnostics. J Appl Phys 48(11):4473–4479CrossRefGoogle Scholar
  32. Faccinetto A, Desgroux P, Ziskind M et al (2011) High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: An approach to studying the soot inception process in low-pressure flames. Combust Flame 158(2):227–239CrossRefGoogle Scholar
  33. Farias TL, Köylü ÜÖ, Carvalho MG (1996) Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl Opt 35(33):6560–6567CrossRefGoogle Scholar
  34. Guilhaus M (1995) Special feature: Tutorial. Principles and instrumentation in time-of-flight mass spectrometry. Physical and instrumental concepts. J Mass Spectrom 30(11):1519–1532CrossRefGoogle Scholar
  35. Guilhaus M, Mlynski V, Selby D (1997) Perfect timing: time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11(9):951–962CrossRefGoogle Scholar
  36. Haefliger OP, Zenobi R (1998) Laser mass spectrometric analysis of polycyclic aromatic hydrocarbons with wide wavelength range laser multiphoton ionization spectroscopy. Anal Chem 70(13):2660–2665CrossRefGoogle Scholar
  37. Hansen N, Kasper T, Klippenstein SJ et al (2007) Initial Steps of Aromatic Ring Formation in a Laminar Premixed Fuel-Rich Cyclopentene Flame. J Phys Chem A 111(19):4081–4092CrossRefGoogle Scholar
  38. Herzberg G (1991) Molecular Spectra and Molecular Structure (Electronic Spectra and Electronic Structure of Polyatomic Molecules). Vol. III, Krieger Publishing Company, MalabarGoogle Scholar
  39. Hofmann MB, Kock BF, Schulz C (2007) A web-based interface for modeling laser-induced incandescence (LIISim). In: 3rd European combustion meeting, Chania, Kreta. Available at
  40. Kamphus M, Braun-Unkhoff M, Kohse-Höinghaus K (2008) Formation of small PAHs in laminar premixed low-pressure propene and cyclopentene flames: experiment and modeling. Combust Flame 152(1–2):28–59CrossRefGoogle Scholar
  41. Kamphus M, Liu NN, Atakan B et al (2002) REMPI temperature measurement in molecular beam sampled low-pressure flames. Proc Combust Inst 29(2):2627–2633CrossRefGoogle Scholar
  42. Kasper TS, Oβwald P, Kamphus M et al (2007) Ethanol flame structure investigated by molecular beam mass spectrometry. Combust Flame 150(3):220–231CrossRefGoogle Scholar
  43. Keller A, Kovacs R, Homann KH (2000) Large molecules, ions, radicals and small soot particles in fuel-rich hydrocarbon flames. Part IV. Large polycyclic aromatic hydrocarbons and their radicals in a fuel-rich benzene-oxygen flame. Phys Chem Chem Phys 2(8):1667–1675CrossRefGoogle Scholar
  44. Klots CE (1981) Rotational relaxation in sonic nozzle expansions. J Chem Phys 72:192–197CrossRefGoogle Scholar
  45. Köhler M, Geigle KP, Blacha T et al (2012) Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame. Combust Flame 159(8):2620–2635CrossRefGoogle Scholar
  46. Kohse-Höinghaus K, Barlow RS, Aldèn M et al (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30(1):89–123CrossRefGoogle Scholar
  47. Lee SM, Yoon SS, Chung SH (2004) Synergistic effect on soot formation in counterflow diffusion flames of ethylene/propane mixtures with benzene addition. Combust Flame 136:493–500CrossRefGoogle Scholar
  48. Lehre T, Bockhorn H, Jungfleisch B et al (2003) Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures. Chemosphere 51(10):1055–1061CrossRefGoogle Scholar
  49. Lemaire R, Therssen E, Desgroux P (2010) Effect of ethanol addition in gasoline and gasoline-surrogate on soot formation in turbulent spray flames. Fuel 89(12):3952–3959CrossRefGoogle Scholar
  50. Levy DH (1980) Laser spectroscopy of cold gas-phase molecules. Annu Rev Phys Chem 31:197–225CrossRefGoogle Scholar
  51. Li Y, Tian Z, Zhang L et al (2009) An experimental study of the rich premixed ethylbenzene flame at low pressure. Proc Combust Inst 32(1):647–655CrossRefGoogle Scholar
  52. Lias SG (2012) Ionization energy evaluation. In: Linstrom PJ, Mallard WG (eds) (National Institute of Standards and Technology, Gaithersburg, MD) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 20899. Accessed 26 Nov 2012
  53. Liu F, He X, Ma X et al (2011) An experimental and numerical study of the effects of dimethyl ether addition to fuel on polycyclic aromatic hydrocarbon and soot formation in laminar coflow ethylene/air diffusion flames. Combust Flame 158:547–563CrossRefGoogle Scholar
  54. Liu F, Thomson KA, Smallwood GJ (2008) Effects of soot absorption and scattering on LII intensities in laminar coflow diffusion flames. J Quant Spectrosc Radiat Transf 109(2):337–348CrossRefGoogle Scholar
  55. Maffi S, De Iuliis S, Cignoli F et al (2011) Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames. Appl Phys B 104(2):357–366CrossRefGoogle Scholar
  56. Mamyrin BA (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom 206(3):251–266CrossRefGoogle Scholar
  57. Mathieu O, Frache G, Djebaïli-Chaumeix N et al (2009) Laser desorption-ionization time-of-flight mass spectrometry for analyses of heavy hydrocarbons adsorbed on soot formed behind reflected shock waves. Proc Combust Inst 32(1):971–978CrossRefGoogle Scholar
  58. Mazely TL, Smith MA (1988) Kinetic analysis in thermally anisotropic systems: Application to supersonic free jet expansions. J Chem Phys 89:2048–2062CrossRefGoogle Scholar
  59. McEnally CS, Pfefferle LD (2009) Sooting tendencies of nonvolatile aromatic hydrocarbons. Proc Combust Inst 32(1):673–679CrossRefGoogle Scholar
  60. Melton LA (1984) Soot diagnostics based on laser heating. Appl Opt 23(13):2201–2208CrossRefGoogle Scholar
  61. Merchiers O, Eyraud C, Geffrin J-M et al (2010) Microwave measurements of the full amplitude scattering matrix of a complex aggregate: a database for the assessment of light scattering codes. Opt Express 18(3):2056–2075CrossRefGoogle Scholar
  62. Mercier X, Wartel M, Pauwels JF et al (2008) Implementation of a new spectroscopic method to quantify aromatic species involved in the formation of soot particles in flames. Appl Phys B 91(2):387–395CrossRefGoogle Scholar
  63. Michelsen HA (2003) Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J Chem Phys 118(15):7012–7045CrossRefGoogle Scholar
  64. Michelsen HA, Liu F, Kock BF et al (2007) Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl Phys B 87(3):503–521CrossRefGoogle Scholar
  65. Migliorini F, Thomson KA, Smallwood GJ (2011) Investigation of optical properties of aging soot. Appl Phys B 104:273–283CrossRefGoogle Scholar
  66. Oh KC, Shin HD (2006) The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel 85(5–6):615–624CrossRefGoogle Scholar
  67. Öktem B, Tolocka MP, Zhao B et al (2005) Chemical species associated with the early stage of soot growth in a laminar premixed ethylene-oxygen-argon flame. Combust Flame 142(4):364–373CrossRefGoogle Scholar
  68. Pickett LM, Siebers DL (2004) Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combust Flame 138(1–2):114–135CrossRefGoogle Scholar
  69. Qi F (2013) Combustion chemistry probed by synchrotron VUV photo-ionization mass spectrometry. Proc Combust Inst 34(1):33–63CrossRefGoogle Scholar
  70. Qi F, McIlroy A (2005) Identifying combustion intermediates via tunable vacuum ultraviolet photoionisation mass spectrometry. Combust Sci Technol 177:2021–2037CrossRefGoogle Scholar
  71. Reimann J, Kuhlmann S-A, Will S (2009) 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Appl Phys B 96(4):583–592CrossRefGoogle Scholar
  72. Santoro RJ, Shaddix CR (2002) Laser-Induced Incandescence. In: Kohse-Hoinghaus K, Jeffries J (eds) Applied combustion diagnostics. Taylor and Francis, NewYorkGoogle Scholar
  73. Schoemaecker Moreau C, Therssen E, Mercier X et al (2004) Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Appl Phys B 78(3):485–492CrossRefGoogle Scholar
  74. Schulz C, Kock BF, Hofmann M et al (2006) Laser-induced incandescence: recent trends and current questions. Appl Phys B 83(3):333–354CrossRefGoogle Scholar
  75. Shapiro AH (1953) The dynamics and thermodynamics of compressible fluid flow, 2nd edn. Wiley, NewYorkGoogle Scholar
  76. Smyth KC, Shaddix CR (1996) The elusive history of m = 1.57–0.56i for the refractive index of soot. Combust Flame 107(3):314–320CrossRefGoogle Scholar
  77. Snelling DR, Liu F, Smallwood GJ et al. (2000) Evaluation of the nanoscale heat and mass transfer model of LII: Prediction of the excitation intensity. In: Proceedings of the 34th national heat transfer conference, Pittsburgh, PennsylvaniaGoogle Scholar
  78. Snelling DR, Smallwood GJ, Liu F et al (2005) A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl Opt 44(31):6773–6785CrossRefGoogle Scholar
  79. Snelling DR, Thomson KA, Smallwood GJ et al (1999) Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl Opt 38(12):2478–2485CrossRefGoogle Scholar
  80. Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35(2):648–687Google Scholar
  81. Thomson KA, Gülder ÖL, Weckman EJ et al (2005) Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combust Flame 140(3):222–232CrossRefGoogle Scholar
  82. Vander Wal RL, Jensen KA (1998) Laser-induced incandescence: excitation intensity. Appl Opt 37(9):1607–1616CrossRefGoogle Scholar
  83. Vander Wal RL, Jensen KA, Choi MY (1997) Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust Flame 109(3):399–414CrossRefGoogle Scholar
  84. Wartel M, Pauwels JF, Desgroux P et al (2010) Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence. Appl Phys B 100(4):933–943CrossRefGoogle Scholar
  85. Wartel M, Pauwels JF, Desgroux P et al (2011) Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence. J Phys Chem A 115(49):14153–14162CrossRefGoogle Scholar
  86. Witze PO, Hochgreb S, Kayes D et al (2001) Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame. Appl Opt 40(15):2443–2452CrossRefGoogle Scholar
  87. Wu J, Song KH, Litzinger T et al (2006) Reduction of PAH and soot in premixed ethylene/air flames by addition of ethanol. Combust Flame 144(4):675–687CrossRefGoogle Scholar
  88. Xiao J, Austin E, Roberts WL (2005) Relative polycyclic aromatic hydrocarbon concentrations in unsteady counterflow diffusion flames. Combust Sci Technol 177(4):691–713CrossRefGoogle Scholar
  89. Yon J, Rozé C, Girasole T et al (2008) Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Part Part Syst Char 25:54–67CrossRefGoogle Scholar
  90. Zerbs J, Geigle K, Lammel O et al (2009) The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames. Appl Phys B 96(4):683–694CrossRefGoogle Scholar
  91. Zhao B, Yang Z, Wang J et al (2003) Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci Technol 37(8):611–620CrossRefGoogle Scholar
  92. Zimmermann R, Blumenstock M, Heger HJ et al (2001) Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ Sci Technol 35(6):1019–1030CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Xavier Mercier
    • 1
  • Alessandro Faccinetto
    • 1
  • Pascale Desgroux
    • 1
  1. 1.Physicochimie des Processus de Combustion et de l’Atmosphère (PC2A)UMR Université/CNRS 8522, Université Lille 1 — Sciences et TechnologiesVilleneuve d’Ascq CedexFrance

Personalised recommendations