Advertisement

Phylogeny

  • Naruya Saitou
Chapter
Part of the Computational Biology book series (COBO, volume 17)

Abstract

DNA replications generate phylogenies. Therefore, phylogenetic relationship of DNAs is fundamental for those of individuals, genes, and species. Their relationships and differences are discussed as well as the biologically important concepts such as gene genealogy, paralogy, orthology, and horizontal gene transfer. Basic concepts of trees and networks are then explained including mathematical definition, number of possible tree topologies, and description of trees and networks. Biological implications of trees and networks such as fission and fusion of species and populations and the relationship with taxonomy are also discussed.

Keywords

Gene Duplication Horizontal Gene Transfer Branch Length Rooted Tree Tree Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Darwin, C. (1859). On the origin of species. London: John Murray.Google Scholar
  2. 2.
    Deppe, U., et al. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 75, 376–380.CrossRefGoogle Scholar
  3. 3.
    Saitou, N. (1995). A genetic affinity analysis of human populations. Human Evolution, 10, 17–33.CrossRefGoogle Scholar
  4. 4.
    Ahn, S. M., et al. (2011). Genome Research, 16, 1622–1629.Google Scholar
  5. 5.
    International HapMap Project Home Page: http://hapmap.ncbi.nlm.nih.gov/
  6. 6.
    Hansen, A. K., et al. (2007). American Journal of Botany, 94, 42–46.CrossRefGoogle Scholar
  7. 7.
    Saitou, N. (2004). “Genomu to Shinka” (in Japanese, meaning ‘Genome and evolution’ in English). Tokyo: Shin-yosha.Google Scholar
  8. 8.
    Ingman, M., Kaessman, H., Paabo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708–713.CrossRefGoogle Scholar
  9. 9.
    Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.CrossRefGoogle Scholar
  10. 10.
    Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.Google Scholar
  11. 11.
    Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford/New York: Oxford University Press.Google Scholar
  12. 12.
    Hedges, S. B., Dodley, J., & Kumar, S. (2006). TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics, 22, 2971–2972.CrossRefGoogle Scholar
  13. 13.
    Kitano, T., Satou, M., & Saitou, N. (2010). Evolution of two Rh blood group-related genes of the amphioxus species Branchiostoma floridae. Genes & Genetic Systems, 85, 121–127.CrossRefGoogle Scholar
  14. 14.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular and Biological Evolution, 4, 406–425.Google Scholar
  15. 15.
    Takezaki, N., Rzhetsky, A., & Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular and Biological Evolution, 12, 823–833.Google Scholar
  16. 16.
    Ezawa, K., Ikeo, K., Gojobori, T., & Saitou, N. (2011). Evolutionary patterns of recently emerged animal duplogs. Genome Biology and Evolution, 3, 1119–1135.Google Scholar
  17. 17.
    Fitch, W. M. (1970). Distinguishing homologous from analogous proteins. Systematic Zoology, 19, 99–113.CrossRefGoogle Scholar
  18. 18.
    Wolfe, K. (2000). Robustness – It’s not where you think it is. Nature Genetics, 25, 3–4.CrossRefGoogle Scholar
  19. 19.
    Sonnhammer, E. L. L., & Koonin, E. V. (2002). Orthology, paralogy, and proposed classification for paralog subtypes. Trends in Genetics, 18, 619–620.CrossRefGoogle Scholar
  20. 20.
    Kawamura, S., Saitou, N., & Ueda, S. (1992). Concerted evolution of the primate immunoglobulin alpha gene through gene conversion. Journal of Biological Chemistry, 267(11), 7359–7367.Google Scholar
  21. 21.
    Kitano, T., Sumiyama, K., Shiroishi, T., & Saitou, N. (1998). Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochemical and Biophysical Research Communications, 249, 78–85.CrossRefGoogle Scholar
  22. 22.
    Kitano, T., & Saitou, N. (1999). Evolution of Rh blood group genes have experienced gene conversions and positive selection. Journal of Molecular Evolution, 49, 615–626.CrossRefGoogle Scholar
  23. 23.
    Koonin, E. V., Makarova, K. S., & Aravind, L. (2001). Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Review of Microbiology, 55, 709–742.CrossRefGoogle Scholar
  24. 24.
    Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringe pathovar suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.CrossRefGoogle Scholar
  25. 25.
    Nakamura, Y., Itoh, T., Matsuda, H., & Gojobori, T. (2004). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics, 36, 760–766.CrossRefGoogle Scholar
  26. 26.
    Archibald, J. M., & Richards, T. A. (2011). Gene transfer: Anything goes in plant mitochondria. BMC Biology, 8, 147.CrossRefGoogle Scholar
  27. 27.
    Dehal P. et al. (2002). The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins. Science, 298, 2157–2167.Google Scholar
  28. 28.
    Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  29. 29.
    Kryukov, K., & Saitou, N. (2010). MISHIMA – A new method for high speed multiple alignment of nucleotide sequences of bacterial genome scale data. BMC Bioinformatics, 11, 142.CrossRefGoogle Scholar
  30. 30.
    Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRefGoogle Scholar
  31. 31.
    Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.CrossRefGoogle Scholar
  32. 32.
    Kitano, T., Liu, Y.-H., Ueda, S., & Saitou, N. (2004). Human specific amino acid changes found in 103 protein coding genes. Molecular Biology and Evolution, 21, 936–944.CrossRefGoogle Scholar
  33. 33.
    Dress, A., Huber, K. T., Koolen, J., Moulton, V., & Spillner, A. (2011). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. 34.
    Cavalli-Sforza, L. L., & Edwards, A. (1967). Phylogenetic analysis. Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.Google Scholar
  35. 35.
    Felsenstein, J. (1978). The number of evolutionary trees. Systematic Zoology, 27, 27–33.CrossRefGoogle Scholar
  36. 36.
    Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Oxford: Oxford University Press.Google Scholar
  37. 37.
  38. 38.
    Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53, 131–147.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transaction of Royal Society of London Series B, 213, 21–87.CrossRefGoogle Scholar
  40. 40.
    Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., & Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103–1108.CrossRefGoogle Scholar
  41. 41.
    Sarich, V. M., & Wilson, A. C. (1967). Immunological time scale for hominoid evolution. Science, 158, 1200–1204.CrossRefGoogle Scholar
  42. 42.
    Saitou, N. (2005). Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenetic and Genome Research, 108, 16–21.CrossRefGoogle Scholar
  43. 43.
    Huxley, J. (1958). Evolutionary process and taxonomy with special reference to grades (pp. 21–38). Uppsala: Uppsala University Arsskr.Google Scholar
  44. 44.
    Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.Google Scholar
  45. 45.
    Wikipedia on Willi Henning: http://en.wikipedia.org/wiki/Willi_Hennig
  46. 46.
    Saitou, N. (2007b). Genomu Shinkagaku Nyumon (written in Japanese, meaning ‘Introduction to evolutionary genomics’). Tokyo: Kyoritsu Shuppan.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Naruya Saitou
    • 1
  1. 1.Division of Population GeneticsNational Institute of Genetics (NIG)MishimaJapan

Personalised recommendations