Skip to main content

PASTREM: Proactive Ontology Based Recommendations for Information Workers

  • Chapter
  • 744 Accesses

Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

Information work involves the frequent (re)use of information objects (e.g. files, web sites, emails) for different tasks. Information reuse is complicated by the scattered organization of information among different locations. Therefore, access support based on recommendations is beneficial. Still, support needs to consider the ad-hoc nature of information work and the resulting uncertainty of information requirements. We present PASTREM, an ontology-based recommender system which proactively proposes information objects for reuse while a user interacts with a computer. PASTREM reflects the ad-hoc nature of information work and allows users to switch seamlessly between recommendations for more multitasking oriented or more focused work. This chapter describes the PASTREM recommender, the used data foundation of interaction histories, data storage in an ontology and the process of recommendation elicitation. PASTREM is evaluated in comparison with other, activity related recommendation approaches for information reuse, namely last recently used, most often used, longest used and semantically related. We report on strength and weaknesses of the approaches and show the benefits of PASTREM as recommender which considers the difference between single task focused and multitasking oriented recommendations.

Keywords

  • Recommender System
  • Information Requirement
  • Latent Dirichlet Allocation
  • Information Object
  • Task Switch

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-5301-6_6
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-5301-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5

Notes

  1. 1.

    PASTREM refers to the supported process: the REMembering of useful information objects which already have been used in the PAST.

  2. 2.

    An example is a priest who contracts a marriage.

  3. 3.

    Dyonipos uses ontologies only to capture events in interaction histories. The classifiers do not extend the ontology.

  4. 4.

    http://nepomuk.semanticdesktop.org/nepomuk/.

  5. 5.

    From now on and throughout the paper entities that belong to CWO are given without prefix. For all other entities, the respective prefix is given.

References

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 33(6), 81–749.

    Google Scholar 

  • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.

    Google Scholar 

  • Aral, S., & Brynjolfsson, E. (2007). Information, technology and information worker productivity: task level evidence. Cambridge: National Bureau of Economic Research.

    Google Scholar 

  • Austin, J. L. (1962). How to do things with words. Cambridge: Harvard University Press.

    Google Scholar 

  • Barreau, D., & Nardi, B. (1995). Finding and reminding: file organization from the desktop. ACM SIGCHI Bulletin, 27(3), 39–43.

    CrossRef  Google Scholar 

  • Bergman, O., & Whittaker, S. (2012). How do we find personal files?: the effect of OS, presentation & depth on file navigation. In Proceedings of the 2012 ACM annual conference on human factors in computing systems.

    Google Scholar 

  • Bergman, O., Tucker, S., Beyth-marom, R., Cutrell, E., & Whittaker, S. (2009). It’s not that important: demoting personal information of low subjective importance using GrayArea.

    Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4–5), 993–1022.

    MATH  Google Scholar 

  • Cheyer, A., Park, J., & Giuli, R. (2005). IRIS: integrate, relate. infer. share. DTIC Document.

    Google Scholar 

  • Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and interruptions. In Proceedings of the SIGCHI.

    Google Scholar 

  • Farhoomand, B. A. F., & Drury, D. H. (2002). Managerial information overload. Communications of the ACM, 45(10), 127–131.

    CrossRef  Google Scholar 

  • Gallup and San Jose State University and Park, Institute for the Future in Menlo (1999). Managing corporate communications. In The information age. Stamford: Pitney Bowes.

    Google Scholar 

  • Gangemi, A., Borgo, S., & Catenacci, C. (2004). Task taxonomies for knowledge content. METOKIS deliverable D.

    Google Scholar 

  • Gangemi, A., Guarino, N., & Masolo, C. (2002). Sweetening ontologies with DOLCE. In Knowledge engineering and knowledge management: ontologies and the semantic web (pp. 223–233). Berlin: Springer.

    Google Scholar 

  • González, V. M., & Mark, G. (2004). Constant, constant, multi-tasking craziness: managing multiple working spheres. In Proceedings of the SIGCHI conference on human factors in computing systems (Vol. 6, pp. 113–120). New York: ACM.

    Google Scholar 

  • Heinrich, G. (2009). Parameter estimation for text analysis (Fraunhofer Technology Report).

    Google Scholar 

  • Hussein, T., Westheide, D., & Ziegler, J. (2007). Context-adaptation based on ontologies and spreading activation. In Proceedings of ABIS ’07: 15th workshop on adaptivity and user modeling in interactive systems.

    Google Scholar 

  • Jensen, C., Lonsdale, H., Wynn, E., & Cao, J. (2010). The life and times of files and information: a study of desktop provenance. In Proceedings of the 28th CHI (pp. 767–776). New York: ACM.

    Google Scholar 

  • Kaptelinin, V. (2003). UMEA: translating interaction histories into project contexts. In Proceedings of the SIGCHI conference on human factors in computing systems (Vol. 5, pp. 353–360). New York: ACM.

    Google Scholar 

  • Link, H., Lane, T., & Magliano, J. (2005). Models and model biases for automatically learning task switching behavior. In Foundations of augmented cognition (Vol. 5, pp. 510–519). Hillsdale: Erlbaum.

    Google Scholar 

  • Lokaiczyk, R., Faatz, A., Beckhaus, A., & Goertz, M. (2007). Enhancing just-in-time E-learning through machine learning on desktop context sensors. In Modeling and using context (pp. 330–341). Berlin: Springer.

    CrossRef  Google Scholar 

  • Makolm, J. (2008). DYONIPOS: proactive knowledge management. In BLED 2008 proceedings (pp. 475–482).

    Google Scholar 

  • Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., & Horrocks, I. (2001). WonderWeb deliverable D18. Ontology library (final). WonderWeb project.

    Google Scholar 

  • Middleton, S. E., Shadbolt, N. R., & Roure, D. C. D. E. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1), 54–88.

    CrossRef  Google Scholar 

  • Morteo, R., Gonzalez, V. M., Favela, J., & Mark, G. (2004). Sphere juggler: fast context retrieval in support of working spheres. In Proceedings of the fifth Mexican international conference in computer science, 2004. ENC 2004 (pp. 361–367).

    CrossRef  Google Scholar 

  • Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), 544–551.

    CrossRef  Google Scholar 

  • Oberle, D., Lamparter, S., Grimm, S., & Vrande, D. (2006). Towards ontologies for formalizing modularization and communication in large software systems. In Handbook on ontologies. Berlin: Springer.

    Google Scholar 

  • Polyanyi, M. (1966). The tacit dimension. London: Routledge & Kegan Paul.

    Google Scholar 

  • Rath, A., & Weber, N. (2008). Context-aware knowledge services. In Personal Information Management: PIM (pp. 1–11).

    Google Scholar 

  • Salvucci, D., & Taatgen, N. (2008). Threaded cognition: an integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130.

    CrossRef  Google Scholar 

  • Schmidt, B., & Godehardt, E. (2011). Interaction data management. In Knowledge-based and intelligent information and engineering systems. Berlin: Springer.

    Google Scholar 

  • Schmidt, B., Kastl, J., Stoitsev, T., & Mühlhäuser, M. (2011a). Hierarchical task instance mining in interaction histories. In Proceedings of the 29th annual international conference on design of communication (SIGDOC). New York: ACM.

    Google Scholar 

  • Schmidt, B., Paulheim, H., Stoitsev, T., & Mühlhäuser, M. (2011b). Towards a formalization of individual work execution at computer workplaces. In Lecture notes in artificial intelligence. Conceptual structures for discovering knowledge (pp. 270–284). Berlin: Springer.

    CrossRef  Google Scholar 

  • Schmidt, B., Godehardt, E., & Pantel, B. (2012). Visualizing the work process—situation awareness for the knowledge worker. In 3rd IUI workshop on semantic models for adaptive interactive systems (SEMAIS 2012).

    Google Scholar 

  • Shen, J., Li, L., Dietterich, T. G., & Herlocker, J. L. (2006). A hybrid learning system for recognizing user tasks from desktop activities and email messages. In Proceedings of the 11th international conference on intelligent user interfaces—IUI ’06 (pp. 86–92).

    Google Scholar 

  • Sproull, L. S. (1984). The nature of managerial attention. In Advances in information processing in organizations (pp. 9–27). London: JAI Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Schmidt, B., Godehardt, E., Paulheim, H. (2013). PASTREM: Proactive Ontology Based Recommendations for Information Workers. In: Hussein, T., Paulheim, H., Lukosch, S., Ziegler, J., Calvary, G. (eds) Semantic Models for Adaptive Interactive Systems. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-5301-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5301-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5300-9

  • Online ISBN: 978-1-4471-5301-6

  • eBook Packages: Computer ScienceComputer Science (R0)