Advertisement

Status of Research on Insertion and Deletion Variations in the Human Population

  • Liqing Zhang
  • Mingming Liu
  • Layne T. Watson
Part of the Computational Biology book series (COBO, volume 19)

Abstract

Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effect on humans. The void of understanding is largely due to the lack of both biological data and computational resources. Thanks to the progress made by many large-scale genomic projects, a substantial amount of data is now available, enabling the prediction of functional elements in the genome. In this work, we review the impact of indel variants on human biology, evolution, and health, and examine the currently available computational resources for predicting the functional effects of indels and their limitations. We then present a newly developed program for indel effect prediction using a hidden Markov model-based framework and discuss future work for better understanding the effects of indel variants on human biology and health.

Keywords

Human Biology Indel Variant Indel Effect Profile HMMs Homology Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010) CrossRefGoogle Scholar
  2. 2.
    Chen, F.-C., Chen, C.-J., Li, W.-H., Chuang, T.-J.: Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res. 17(1), 16–22 (2007) CrossRefGoogle Scholar
  3. 3.
    Chen, C.-H., Chuang, T.-J., Liao, B.-Y., Chen, F.-C.: Scanning for the signatures of positive selection for human-specific insertions and deletions. Genome Biol. Evol. 1, 415–419 (2009) CrossRefGoogle Scholar
  4. 4.
    Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., Chan, A.P.: Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7(10), e46688 (2012) CrossRefGoogle Scholar
  5. 5.
    Collins, F.S., Drumm, M.L., Cole, J.L., Lockwood, W.K., Vande Woude, G.F., Iannuzzi, M.C.: Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science 235(4792), 1046–1049 (1987) CrossRefGoogle Scholar
  6. 6.
    Cooper, G.M., Shendure, J.: Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12(9), 628–640 (2011) CrossRefGoogle Scholar
  7. 7.
    De, S., Madan Babu, M.: A time-invariant principle of genome evolution. Proc. Natl. Acad. Sci. USA 107(29), 13004–13009 (2010) CrossRefGoogle Scholar
  8. 8.
    Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39(Web Server issue), W29–W37 (2011) CrossRefGoogle Scholar
  9. 9.
    Gupta, R., Ratan, A., Rajesh, C., Chen, R., Lim Kim, H., Burhans, R., Miller, W., Santhosh, S., Davuluri, R.V., Butte, A.J., Schuster, S.C., Seshagiri, S., Thomas, G.: Sequencing and analysis of a South Asian–Indian personal genome. BMC Genomics 13, 440 (2012) CrossRefGoogle Scholar
  10. 10.
    Hu, J., Ng, P.C.: Predicting the effects of frameshifting indels. Genome Biol. 13(2), R9 (2012) CrossRefGoogle Scholar
  11. 11.
    International HapMap Consortium: The international HapMap project. Nature 426(6968), 789–796 (2003) CrossRefGoogle Scholar
  12. 12.
    International HapMap Consortium: A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005) CrossRefGoogle Scholar
  13. 13.
    Karchin, R.: Next generation tools for the annotation of human SNPs. Brief. Bioinform. 10(1), 35–52 (2009) CrossRefGoogle Scholar
  14. 14.
    Kato, S., Han, S.-Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R., Ishioka, C.: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. USA 100(14), 8424–8429 (2003) CrossRefGoogle Scholar
  15. 15.
    Liu, M., Watson, Layne.T., Zhang, L.: HMMvar: Predicting the functional effects of indels and SNPs based on HMM profiles. BMC Bioinform. (under review) Google Scholar
  16. 16.
    Mills, R.E., Luttig, C.T., Larkins, C.E., Beauchamp, A., Tsui, C., Stephen Pittard, W., Devine, S.E.: An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16(9), 1182–1190 (2006) CrossRefGoogle Scholar
  17. 17.
    Mills, R.E., Stephen Pittard, W., Mullaney, J.M., Farooq, U., Creasy, T.H., Mahurkar, A.A., Kemeza, D.M., Strassler, D.S., Ponting, C.P., Webber, C., Devine, S.E.: Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 21(6), 830–839 (2011) CrossRefGoogle Scholar
  18. 18.
    Mullaney, J.M., Mills, R.E., Pittard, W.S., Devine, S.E.: Small insertions and deletions (INDELs) in human genomes. Hum. Mol. Genet. 19, R131–R136 (2010) CrossRefGoogle Scholar
  19. 19.
    Siva, N.: 1000 Genomes Project. Nat. Biotechnol. 26(3), 256 (2008) Google Scholar
  20. 20.
    Wetterbom, A., Sevov, M., Cavelier, L., Bergstrom, T.F.: Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution. J. Mol. Evol. 63(5), 682–690 (2006) CrossRefGoogle Scholar
  21. 21.
    Zia, A., Moses, A.M.: Ranking insertion, deletion and nonsense mutations based on their effect on genetic information. BMC Bioinform. 12, 299 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceVirginia TechBlacksburgUSA
  2. 2.Department of MathmaticsVirginia TechBlacksburgUSA

Personalised recommendations