Skip to main content

Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?

  • Chapter
Models and Algorithms for Genome Evolution

Part of the book series: Computational Biology ((COBO,volume 19))

Abstract

We survey phylogenetic inference from rearrangement data, as viewed through the lens of the work of our group in this area, in tribute to David Sankoff, pioneer and mentor.

Genomic rearrangements were first used for phylogenetic analysis in the late 1920s, but it was not until the 1990s that this approach was revived, with the advent of genome sequencing. G. Watterson et al. proposed to measure the inversion distance between two genomes, J. Palmer et al. studied the evolution of mitochondrial and chloroplast genomes, and D. Sankoff and W. Day published the first algorithmic paper on phylogenetic inference from rearrangement data, giving rise to a fertile field of mathematical, algorithmic, and biological research.

Distance measures for sequence data are simple to define, but those based on rearrangements proved to be complex mathematical objects. The first approaches for phylogenetic inference from rearrangement data, due to D. Sankoff, used model-free distances, such as synteny (colocation on a chromosome) or breakpoints (disrupted adjacencies). The development of algorithms for distance and median computations led to modeling approaches based on biological mechanisms. However, the multiplicity of such mechanisms pose serious challenges. A unifying framework, proposed by S. Yancopoulos et al. and popularized by D. Sankoff, has supported major advances, such as precise distance corrections and efficient algorithms for median estimation, thereby enabling phylogenetic inference using both distance and maximum-parsimony methods.

Likelihood-based methods outperform distance and maximum-parsimony methods, but using such methods with rearrangements has proved problematic. Thus we have returned to an approach we first proposed 12 years ago: encoding the genome structure into sequences and using likelihood methods on these sequences. With a suitable a bias in the ground probabilities, we attain levels of performance comparable to the best sequence-based methods. Unsurprisingly, the idea of injecting such a bias was first proposed by D. Sankoff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl. 1), S27 (2010)

    Google Scholar 

  2. Bader, D., Moret, B., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

    Google Scholar 

  3. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. In: Proc. 9th Ann. Int’l Conf. on Research in Computational Molecular Biology (RECOMB’05). Lecture Notes in Comp. Sci., vol. 3500, pp. 615–629 (2005)

    Google Scholar 

  4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proc. 6th Workshop Algs. in Bioinf. (WABI’06). Lecture Notes in Comp. Sci., vol. 4175, pp. 163–173. Springer, Berlin (2006)

    Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 25–34. Univ. Academy Press, Tokyo (1997)

    Google Scholar 

  7. Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002)

    Google Scholar 

  8. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. In: Proc. 38th Int’l Colloq. on Automata, Languages, and Programming (ICALP 2011). Lecture Notes in Comp. Sci., vol. 6756. Springer, Berlin (2011)

    Google Scholar 

  9. Burki, F., et al.: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2(8), e790 (2007)

    Google Scholar 

  10. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Int’l Conf. Comput. Mol. Biol. (RECOMB’99), pp. 84–93. ACM Press, New York (1999)

    Google Scholar 

  11. Caprara, A.: On the practical solution of the reversal median problem. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 238–251. Springer, Berlin (2001)

    Google Scholar 

  12. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. 3rd Asia Pacific Bioinf. Conf. (APBC’05), pp. 363–378. Imperial College Press, London (2005)

    Google Scholar 

  13. Chen, F., Mackey, A., Vermunt, J., Roos, D.: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2(4), e383 (2007)

    Google Scholar 

  14. Compeau, P.: A simplified view of DCJ-Indel distance. In: Proc. 12th Workshop Algs. in Bioinf. (WABI’12). Lecture Notes in Comp. Sci., vol. 7534, pp. 365–377. Springer, Berlin (2012)

    Google Scholar 

  15. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics, pp. 99–122. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  16. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: A new fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analyses of real and synthetic data. In: Proc. 8th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’00), pp. 104–115 (2000)

    Google Scholar 

  17. Day, W., Sankoff, D.: The computational complexity of inferring phylogenies from chromosome inversion data. J. Theor. Biol. 127, 213–218 (1987)

    Google Scholar 

  18. Demongeot, J., et al.: Hot spots in chromosomal breakage: from description to etiology. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics. Computational Biology, vol. 1, pp. 71–83. Springer, Berlin (2000)

    Google Scholar 

  19. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol. 9(5), 687–705 (2002)

    Google Scholar 

  20. Desper, R., Gascuel, O.: Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol. 21(3), 587–598 (2003)

    Google Scholar 

  21. Dobzhansky, T., Sturtevant, A.: Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23(1), 28–64 (1938)

    Google Scholar 

  22. Downie, S.R., Palmer, J.D.: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis, D., Soltis, P., Doyle, J. (eds.) Molecular Systematics of Plants, pp. 14–35. Chapman and Hall, New York (1992)

    Google Scholar 

  23. Durkin, K., et al.: Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature 482(7383), 81–84 (2012)

    Google Scholar 

  24. Ehrlich, J., Sankoff, D., Nadeau, J.: Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147, 289–296 (1997)

    Google Scholar 

  25. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Proc. 11th Ann. Symp. Combin. Pattern Matching (CPM’00). Lecture Notes in Comp. Sci., vol. 1848, pp. 222–234. Springer, Berlin (2000)

    Google Scholar 

  26. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003)

    MathSciNet  MATH  Google Scholar 

  27. El-Mabrouk, N., Nadeau, J., Sankoff, D.: Genome halving. In: Proc. 9th Ann. Symp. Combin. Pattern Matching (CPM’98). Lecture Notes in Comp. Sci., pp. 235–250. Springer, Berlin (1998)

    Google Scholar 

  28. El-Mabrouk, N., Bryant, D., Sankoff, D.: Reconstructing the pre-doubling genome. In: Proc. 3rd Int’l Conf. Comput. Mol. Biol. RECOMB’99, pp. 154–163. ACM Press, New York (1999)

    Google Scholar 

  29. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  30. Fitzpatrick, D., Logue, M., Stajich, J., Butler, G.: A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6(1), 99 (2006)

    Google Scholar 

  31. Fujimura, K., Conte, M., Kocher, T.: Circular DNA intermediate in the duplication of Nile Tilapia vasa genes. PLoS ONE 6(12), e29477 (2011)

    Google Scholar 

  32. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Comput. (STOC’95), pp. 178–189. ACM Press, New York (1995)

    Google Scholar 

  33. Hannenhalli, S., Pevzner, P.: Transforming mice into men (polynomial algorithm for genomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci. (FOCS’95), pp. 581–592. IEEE Press, Piscataway (1995)

    Google Scholar 

  34. Hilker, R., Sickinger, C., Pedersen, C., Stoye, J.: UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics 28(19), 2509–2511 (2012)

    Google Scholar 

  35. Hu, F., Gao, N., Zhang, M., Tang, J.: Maximum likelihood phylogenetic reconstruction using gene order encodings. In: Proc. 2011 IEEE Symp. Comput. Intell. in Bioinf. & Comput. Biol. (CIBCB’11), pp. 117–122. IEEE Press, Piscataway (2011)

    Google Scholar 

  36. Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast converging method for phylogenetic tree reconstruction. J. Comput. Biol. 6(3), 369–386 (1999)

    Google Scholar 

  37. Jansen, R., Palmer, J.: A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818–5822 (1987)

    Google Scholar 

  38. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104(1), 14–20 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Larget, B., Simon, D., Kadane, J.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. R. Stat. Soc. B 64(4), 681–694 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Letunic, I., Bork, P.: Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39(S2), W475–W478 (2011)

    Google Scholar 

  41. Lin, Y., Moret, B.: Estimating true evolutionary distances under the DCJ model. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’08). Bioinformatics, vol. 24(13), pp. i114–i122 (2008)

    Google Scholar 

  42. Lin, Y., Moret, B.: A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes. J. Comput. Biol. 18(9), 1055–1064 (2011)

    MathSciNet  Google Scholar 

  43. Lin, Y., Rajan, V., Swenson, K., Moret, B.: Estimating true evolutionary distances under rearrangements, duplications, and losses. In: Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10). BMC Bioinformatics, vol. 11(Suppl. 1), pp. S54 (2010)

    Google Scholar 

  44. Lin, Y., Rajan, V., Moret, B.: Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator. J. Comput. Biol. 18(9), 1130–1139 (2011)

    MathSciNet  Google Scholar 

  45. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc. 18th Pacific Symp. on Biocomputing (PSB’13), pp. 285–296. World Scientific, Singapore (2013)

    Google Scholar 

  46. López, M., Samuelsson, T.: eGOB: eukaryotic Gene Order Browser. Bioinformatics (2011)

    Google Scholar 

  47. Ma, J., Ratan, A., Raney, B., Suh, B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proc. Natl. Acad. Sci. USA 105(38), 14254–14261 (2008)

    Google Scholar 

  48. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theor. Comput. Sci. 325(3), 347–360 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Moret, B., Warnow, T.: Reconstructing optimal phylogenetic trees: a challenge in experimental algorithmics. In: Fleischer, R., Moret, B., Schmidt, E. (eds.) Experimental Algorithmics. Lecture Notes in Comp. Sci., vol. 2547, pp. 163–180. Springer, Berlin (2002)

    Google Scholar 

  50. Moret, B., Warnow, T.: Advances in phylogeny reconstruction from gene order and content data. In: Zimmer, E., Roalson, E. (eds.) Molecular Evolution: Producing the Biochemical Data, Part B. Methods in Enzymology, vol. 395, pp. 673–700. Elsevier, Amsterdam (2005)

    Google Scholar 

  51. Moret, B., Wang, L.S., Warnow, T., Wyman, S.: New approaches for reconstructing phylogenies from gene-order data. In: Proc. 9th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’01). Bioinformatics, vol. 17, pp. S165–S173 (2001)

    Google Scholar 

  52. Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB’01), pp. 583–594. World Scientific, Singapore (2001)

    Google Scholar 

  53. Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for computational phylogenetics. J. Supercomput. 22, 99–111 (2002)

    MATH  Google Scholar 

  54. Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Proc. 2nd Workshop Algs. in Bioinf. (WABI’02). Lecture Notes in Comp. Sci., vol. 2452, pp. 521–536. Springer, Berlin (2002)

    Google Scholar 

  55. Moret, B., Tang, J., Wang, L.S., Warnow, T.: Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci. 65(3), 508–525 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–352. Oxford Univ. Press, London (2005)

    Google Scholar 

  57. Nadeau, J., Taylor, B.: Lengths of chromosome segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

    Google Scholar 

  58. Negrisolo, E., Kuhl, H., Forcato, C., Vitulo, N., Reinhardt, R., Patarnello, T., Bargelloni, L.: Different phylogenomic approaches to resolve the evolutionary relationships among model fish species. Mol. Biol. Evol. 27(12), 2757–2774 (2010)

    Google Scholar 

  59. Nozaki, H., et al.: The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J. Mol. Evol. 56(4), 485–497 (2003)

    Google Scholar 

  60. Ouangraoua, A., Boyer, F., McPherson, A., Tannier, E., Chauve, C.: Prediction of contiguous regions in the amniote ancestral genome. In: Proc. 5th Int’l Symp. Bioinformatics Research & Appls (ISBRA’09). Lecture Notes in Comp. Sci., vol. 5542, pp. 173–185. Springer, Berlin (2009)

    Google Scholar 

  61. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 27, 87–97 (1988)

    Google Scholar 

  62. Palmer, J.: Chloroplast and mitochondrial genome evolution in land plants. In: Herrmann, R. (ed.) Cell Organelles, pp. 99–133. Springer, Berlin (1992)

    Google Scholar 

  63. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq. on Comput. Complexity 71 (1998)

    Google Scholar 

  64. Peng, Q., Pevzner, P., Tesler, G.: The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput. Biol. 2(2), e14 (2006)

    Google Scholar 

  65. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13), 7672–7677 (2003)

    Google Scholar 

  66. Ponting, C.: The functional repertoires of metazoan genomes. Nat. Rev. Genet. 9(9), 689–698 (2008)

    Google Scholar 

  67. Price, M., Dehal, P., Arkin, A.: Fasttree: computing large minimum-evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009)

    Google Scholar 

  68. Rajan, V., Xu, A., Lin, Y., Swenson, K., Moret, B.: Heuristics for the inversion median problem. Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10). BMC Bioinform. 11(Suppl. 1), S30 (2010)

    Google Scholar 

  69. Rajan, V., Lin, Y., Moret, B.: TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis. Bioinformatics 28(24), 3324–3325 (2012)

    Google Scholar 

  70. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  71. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1), 35–42 (1975)

    MathSciNet  MATH  Google Scholar 

  72. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Proc. 3rd Ann. Symp. Combin. Pattern Matching (CPM’92). Lecture Notes in Comp. Sci., vol. 644, pp. 121–135. Springer, Berlin (1992)

    Google Scholar 

  73. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Proc. 3rd Conf. Computing and Combinatorics (COCOON’97). Lecture Notes in Comp. Sci., vol. 1276, pp. 251–264. Springer, Berlin (1997)

    Google Scholar 

  74. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5, 555–570 (1998)

    Google Scholar 

  75. Sankoff, D., Blanchette, M.: Phylogenetic invariants for metazoan mitochondrial genome evolution. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 22–31. Univ. Academy Press, Tokyo (1998)

    Google Scholar 

  76. Sankoff, D., Goldstein, M.: Probabilistic models for genome shuffling. Bull. Math. Biol. 51, 117–124 (1989)

    MathSciNet  MATH  Google Scholar 

  77. Sankoff, D., Nadeau, J.: Conserved synteny as a measure of genomic distance. Discrete Appl. Math. 71(1–3), 247–257 (1996)

    MathSciNet  MATH  Google Scholar 

  78. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  79. Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in genome sequence rearrangement. In: Proc. 9th Int’l Conf. Comput. Mol. Biol. (RECOMB’05). Lecture Notes in Comp. Sci., vol. 3388, pp. 30–35. Springer, Berlin (2005)

    Google Scholar 

  80. Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrangement. In: Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods in Enzymology, vol. 183, pp. 428–438. Academic Press, San Diego (1990)

    Google Scholar 

  81. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89(14), 6575–6579 (1992)

    Google Scholar 

  82. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012)

    Google Scholar 

  83. Siepel, A., Moret, B.: Finding an optimal inversion median: experimental results. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 189–203. Springer, Berlin (2001)

    Google Scholar 

  84. da Silva, P.H., Braga, M.D.V., Machado, R., Dantas, S.: DCJ-indel distance with distinct operation costs. In: Proc. 12th Workshop Algs. in Bioinf. (WABI’12). Lecture Notes in Comp. Sci., vol. 7534, pp. 378–390. Springer, Berlin (2012)

    Google Scholar 

  85. Srivastava, M., et al.: The functional repertoires of metazoan genomes. Nature 454(7207), 955–960 (2008)

    Google Scholar 

  86. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Google Scholar 

  87. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of Drosophila pseudoobscura and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22, 448–450 (1936)

    Google Scholar 

  88. Swenson, K., Marron, M., Earnest-DeYoung, J., Moret, B.: Approximating the true evolutionary distance between two genomes. ACM J. Experimental Algorithmics 12 (2008)

    Google Scholar 

  89. Swenson, K., Lin, Y., Rajan, V., Moret, B.: Hurdles and sorting by inversions: combinatorial, statistical, and experimental results. J. Comput. Biol. 16(10), 1339–1351 (2009)

    MathSciNet  Google Scholar 

  90. Tang, J., Moret, B.: Scaling up accurate phylogenetic reconstruction from gene-order data. In: Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’03). Bioinformatics, vol. 19, pp. i305–i312. Oxford Univ. Press, London (2003)

    Google Scholar 

  91. Tang, J., Moret, B.: Linear programming for phylogenetic reconstruction based on gene rearrangements. In: Proc. 16th Ann. Symp. Combin. Pattern Matching (CPM’05). Lecture Notes in Comp. Sci., vol. 3537, pp. 406–416. Springer, Berlin (2005)

    Google Scholar 

  92. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving problems. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes in Comp. Sci., vol. 5251, pp. 1–13. Springer, Berlin (2008)

    Google Scholar 

  93. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 63(5), 587–609 (2002)

    MathSciNet  Google Scholar 

  94. Wang, L.S.: Exact-IEBP: a new technique for estimating evolutionary distances between whole genomes. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 175–188. Springer, Berlin (2001)

    Google Scholar 

  95. Wang, L.S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proc. 33rd Ann. ACM Symp. Theory of Comput. (STOC’01), pp. 637–646. ACM Press, New York (2001)

    Google Scholar 

  96. Wang, L.S., Warnow, T.: Distance-based genome rearrangement phylogeny. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 353–383. Oxford Univ. Press, London (2005)

    Google Scholar 

  97. Wang, L.S., Jansen, R., Moret, B., Raubeson, L., Warnow, T.: Fast phylogenetic methods for genome rearrangement evolution: an empirical study. In: Proc. 7th Pacific Symp. on Biocomputing (PSB’02), pp. 524–535. World Scientific, Singapore (2002)

    Google Scholar 

  98. Wang, H., Xu, Z., Gao, L., Hao, B.: A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9(1), 195 (2009)

    Google Scholar 

  99. Wang, L.S., Leebens-Mack, J., Wall, P., Beckmann, K., dePamphilis, C., Warnow, T.: The impact of multiple protein sequence alignment on phylogenetic estimation. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1108–1119 (2011)

    Google Scholar 

  100. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor. Biol. 99(1), 1–7 (1982)

    Google Scholar 

  101. Xu, A., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes in Comp. Sci., vol. 5251, pp. 25–37. Springer, Berlin (2008)

    Google Scholar 

  102. Xu, A.: A fast and exact algorithm for the median of three problem—a graph decomposition approach. J. Comput. Biol. 16(10), 1369–1381 (2009)

    MathSciNet  Google Scholar 

  103. Xu, A., Moret, B.: GASTS: parsimony scoring under rearrangements. In: Proc. 11th Workshop Algs. in Bioinf. (WABI’11). Lecture Notes in Comp. Sci., vol. 6833, pp. 351–363. Springer, Berlin (2011)

    Google Scholar 

  104. Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications by DCJ. In: Proc. 6th RECOMB Workshop Comp. Genomics (RECOMB-CG’08). Lecture Notes in Comp. Sci., vol. 5267, pp. 170–183. Springer, Berlin (2008)

    Google Scholar 

  105. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Google Scholar 

  106. Zhang, M., Arndt, W., Tang, J.: A branch-and-bound method for the multichromosomal reversal median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08), pp. 1–13 (2008)

    Google Scholar 

  107. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’08). Bioinformatics, vol. 24, pp. i96–i104 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard M. E. Moret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Moret, B.M.E., Lin, Y., Tang, J. (2013). Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds) Models and Algorithms for Genome Evolution. Computational Biology, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5298-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5298-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5297-2

  • Online ISBN: 978-1-4471-5298-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics