Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?

Part of the Computational Biology book series (COBO, volume 19)

Abstract

We survey phylogenetic inference from rearrangement data, as viewed through the lens of the work of our group in this area, in tribute to David Sankoff, pioneer and mentor.

Genomic rearrangements were first used for phylogenetic analysis in the late 1920s, but it was not until the 1990s that this approach was revived, with the advent of genome sequencing. G. Watterson et al. proposed to measure the inversion distance between two genomes, J. Palmer et al. studied the evolution of mitochondrial and chloroplast genomes, and D. Sankoff and W. Day published the first algorithmic paper on phylogenetic inference from rearrangement data, giving rise to a fertile field of mathematical, algorithmic, and biological research.

Distance measures for sequence data are simple to define, but those based on rearrangements proved to be complex mathematical objects. The first approaches for phylogenetic inference from rearrangement data, due to D. Sankoff, used model-free distances, such as synteny (colocation on a chromosome) or breakpoints (disrupted adjacencies). The development of algorithms for distance and median computations led to modeling approaches based on biological mechanisms. However, the multiplicity of such mechanisms pose serious challenges. A unifying framework, proposed by S. Yancopoulos et al. and popularized by D. Sankoff, has supported major advances, such as precise distance corrections and efficient algorithms for median estimation, thereby enabling phylogenetic inference using both distance and maximum-parsimony methods.

Likelihood-based methods outperform distance and maximum-parsimony methods, but using such methods with rearrangements has proved problematic. Thus we have returned to an approach we first proposed 12 years ago: encoding the genome structure into sequences and using likelihood methods on these sequences. With a suitable a bias in the ground probabilities, we attain levels of performance comparable to the best sequence-based methods. Unsurprisingly, the idea of injecting such a bias was first proposed by D. Sankoff.

References

  1. 1.
    Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl. 1), S27 (2010) Google Scholar
  2. 2.
    Bader, D., Moret, B., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001) Google Scholar
  3. 3.
    Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. In: Proc. 9th Ann. Int’l Conf. on Research in Computational Molecular Biology (RECOMB’05). Lecture Notes in Comp. Sci., vol. 3500, pp. 615–629 (2005) Google Scholar
  4. 4.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proc. 6th Workshop Algs. in Bioinf. (WABI’06). Lecture Notes in Comp. Sci., vol. 4175, pp. 163–173. Springer, Berlin (2006) Google Scholar
  5. 5.
    Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316 (2009) MathSciNetMATHGoogle Scholar
  6. 6.
    Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 25–34. Univ. Academy Press, Tokyo (1997) Google Scholar
  7. 7.
    Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002) Google Scholar
  8. 8.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. In: Proc. 38th Int’l Colloq. on Automata, Languages, and Programming (ICALP 2011). Lecture Notes in Comp. Sci., vol. 6756. Springer, Berlin (2011) Google Scholar
  9. 9.
    Burki, F., et al.: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2(8), e790 (2007) Google Scholar
  10. 10.
    Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Int’l Conf. Comput. Mol. Biol. (RECOMB’99), pp. 84–93. ACM Press, New York (1999) Google Scholar
  11. 11.
    Caprara, A.: On the practical solution of the reversal median problem. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 238–251. Springer, Berlin (2001) Google Scholar
  12. 12.
    Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. 3rd Asia Pacific Bioinf. Conf. (APBC’05), pp. 363–378. Imperial College Press, London (2005) Google Scholar
  13. 13.
    Chen, F., Mackey, A., Vermunt, J., Roos, D.: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2(4), e383 (2007) Google Scholar
  14. 14.
    Compeau, P.: A simplified view of DCJ-Indel distance. In: Proc. 12th Workshop Algs. in Bioinf. (WABI’12). Lecture Notes in Comp. Sci., vol. 7534, pp. 365–377. Springer, Berlin (2012) Google Scholar
  15. 15.
    Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics, pp. 99–122. Kluwer Academic, Dordrecht (2000) Google Scholar
  16. 16.
    Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: A new fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analyses of real and synthetic data. In: Proc. 8th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’00), pp. 104–115 (2000) Google Scholar
  17. 17.
    Day, W., Sankoff, D.: The computational complexity of inferring phylogenies from chromosome inversion data. J. Theor. Biol. 127, 213–218 (1987) Google Scholar
  18. 18.
    Demongeot, J., et al.: Hot spots in chromosomal breakage: from description to etiology. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics. Computational Biology, vol. 1, pp. 71–83. Springer, Berlin (2000) Google Scholar
  19. 19.
    Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol. 9(5), 687–705 (2002) Google Scholar
  20. 20.
    Desper, R., Gascuel, O.: Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol. 21(3), 587–598 (2003) Google Scholar
  21. 21.
    Dobzhansky, T., Sturtevant, A.: Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23(1), 28–64 (1938) Google Scholar
  22. 22.
    Downie, S.R., Palmer, J.D.: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis, D., Soltis, P., Doyle, J. (eds.) Molecular Systematics of Plants, pp. 14–35. Chapman and Hall, New York (1992) Google Scholar
  23. 23.
    Durkin, K., et al.: Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature 482(7383), 81–84 (2012) Google Scholar
  24. 24.
    Ehrlich, J., Sankoff, D., Nadeau, J.: Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147, 289–296 (1997) Google Scholar
  25. 25.
    El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Proc. 11th Ann. Symp. Combin. Pattern Matching (CPM’00). Lecture Notes in Comp. Sci., vol. 1848, pp. 222–234. Springer, Berlin (2000) Google Scholar
  26. 26.
    El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003) MathSciNetMATHGoogle Scholar
  27. 27.
    El-Mabrouk, N., Nadeau, J., Sankoff, D.: Genome halving. In: Proc. 9th Ann. Symp. Combin. Pattern Matching (CPM’98). Lecture Notes in Comp. Sci., pp. 235–250. Springer, Berlin (1998) Google Scholar
  28. 28.
    El-Mabrouk, N., Bryant, D., Sankoff, D.: Reconstructing the pre-doubling genome. In: Proc. 3rd Int’l Conf. Comput. Mol. Biol. RECOMB’99, pp. 154–163. ACM Press, New York (1999) Google Scholar
  29. 29.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009) MATHGoogle Scholar
  30. 30.
    Fitzpatrick, D., Logue, M., Stajich, J., Butler, G.: A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6(1), 99 (2006) Google Scholar
  31. 31.
    Fujimura, K., Conte, M., Kocher, T.: Circular DNA intermediate in the duplication of Nile Tilapia vasa genes. PLoS ONE 6(12), e29477 (2011) Google Scholar
  32. 32.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Comput. (STOC’95), pp. 178–189. ACM Press, New York (1995) Google Scholar
  33. 33.
    Hannenhalli, S., Pevzner, P.: Transforming mice into men (polynomial algorithm for genomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci. (FOCS’95), pp. 581–592. IEEE Press, Piscataway (1995) Google Scholar
  34. 34.
    Hilker, R., Sickinger, C., Pedersen, C., Stoye, J.: UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics 28(19), 2509–2511 (2012) Google Scholar
  35. 35.
    Hu, F., Gao, N., Zhang, M., Tang, J.: Maximum likelihood phylogenetic reconstruction using gene order encodings. In: Proc. 2011 IEEE Symp. Comput. Intell. in Bioinf. & Comput. Biol. (CIBCB’11), pp. 117–122. IEEE Press, Piscataway (2011) Google Scholar
  36. 36.
    Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast converging method for phylogenetic tree reconstruction. J. Comput. Biol. 6(3), 369–386 (1999) Google Scholar
  37. 37.
    Jansen, R., Palmer, J.: A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818–5822 (1987) Google Scholar
  38. 38.
    Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104(1), 14–20 (2007) MathSciNetMATHGoogle Scholar
  39. 39.
    Larget, B., Simon, D., Kadane, J.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. R. Stat. Soc. B 64(4), 681–694 (2002) MathSciNetMATHGoogle Scholar
  40. 40.
    Letunic, I., Bork, P.: Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39(S2), W475–W478 (2011) Google Scholar
  41. 41.
    Lin, Y., Moret, B.: Estimating true evolutionary distances under the DCJ model. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’08). Bioinformatics, vol. 24(13), pp. i114–i122 (2008) Google Scholar
  42. 42.
    Lin, Y., Moret, B.: A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes. J. Comput. Biol. 18(9), 1055–1064 (2011) MathSciNetGoogle Scholar
  43. 43.
    Lin, Y., Rajan, V., Swenson, K., Moret, B.: Estimating true evolutionary distances under rearrangements, duplications, and losses. In: Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10). BMC Bioinformatics, vol. 11(Suppl. 1), pp. S54 (2010) Google Scholar
  44. 44.
    Lin, Y., Rajan, V., Moret, B.: Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator. J. Comput. Biol. 18(9), 1130–1139 (2011) MathSciNetGoogle Scholar
  45. 45.
    Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc. 18th Pacific Symp. on Biocomputing (PSB’13), pp. 285–296. World Scientific, Singapore (2013) Google Scholar
  46. 46.
    López, M., Samuelsson, T.: eGOB: eukaryotic Gene Order Browser. Bioinformatics (2011) Google Scholar
  47. 47.
    Ma, J., Ratan, A., Raney, B., Suh, B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proc. Natl. Acad. Sci. USA 105(38), 14254–14261 (2008) Google Scholar
  48. 48.
    Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theor. Comput. Sci. 325(3), 347–360 (2004) MathSciNetMATHGoogle Scholar
  49. 49.
    Moret, B., Warnow, T.: Reconstructing optimal phylogenetic trees: a challenge in experimental algorithmics. In: Fleischer, R., Moret, B., Schmidt, E. (eds.) Experimental Algorithmics. Lecture Notes in Comp. Sci., vol. 2547, pp. 163–180. Springer, Berlin (2002) Google Scholar
  50. 50.
    Moret, B., Warnow, T.: Advances in phylogeny reconstruction from gene order and content data. In: Zimmer, E., Roalson, E. (eds.) Molecular Evolution: Producing the Biochemical Data, Part B. Methods in Enzymology, vol. 395, pp. 673–700. Elsevier, Amsterdam (2005) Google Scholar
  51. 51.
    Moret, B., Wang, L.S., Warnow, T., Wyman, S.: New approaches for reconstructing phylogenies from gene-order data. In: Proc. 9th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’01). Bioinformatics, vol. 17, pp. S165–S173 (2001) Google Scholar
  52. 52.
    Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB’01), pp. 583–594. World Scientific, Singapore (2001) Google Scholar
  53. 53.
    Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for computational phylogenetics. J. Supercomput. 22, 99–111 (2002) MATHGoogle Scholar
  54. 54.
    Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Proc. 2nd Workshop Algs. in Bioinf. (WABI’02). Lecture Notes in Comp. Sci., vol. 2452, pp. 521–536. Springer, Berlin (2002) Google Scholar
  55. 55.
    Moret, B., Tang, J., Wang, L.S., Warnow, T.: Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci. 65(3), 508–525 (2002) MathSciNetMATHGoogle Scholar
  56. 56.
    Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–352. Oxford Univ. Press, London (2005) Google Scholar
  57. 57.
    Nadeau, J., Taylor, B.: Lengths of chromosome segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984) Google Scholar
  58. 58.
    Negrisolo, E., Kuhl, H., Forcato, C., Vitulo, N., Reinhardt, R., Patarnello, T., Bargelloni, L.: Different phylogenomic approaches to resolve the evolutionary relationships among model fish species. Mol. Biol. Evol. 27(12), 2757–2774 (2010) Google Scholar
  59. 59.
    Nozaki, H., et al.: The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J. Mol. Evol. 56(4), 485–497 (2003) Google Scholar
  60. 60.
    Ouangraoua, A., Boyer, F., McPherson, A., Tannier, E., Chauve, C.: Prediction of contiguous regions in the amniote ancestral genome. In: Proc. 5th Int’l Symp. Bioinformatics Research & Appls (ISBRA’09). Lecture Notes in Comp. Sci., vol. 5542, pp. 173–185. Springer, Berlin (2009) Google Scholar
  61. 61.
    Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 27, 87–97 (1988) Google Scholar
  62. 62.
    Palmer, J.: Chloroplast and mitochondrial genome evolution in land plants. In: Herrmann, R. (ed.) Cell Organelles, pp. 99–133. Springer, Berlin (1992) Google Scholar
  63. 63.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq. on Comput. Complexity 71 (1998) Google Scholar
  64. 64.
    Peng, Q., Pevzner, P., Tesler, G.: The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput. Biol. 2(2), e14 (2006) Google Scholar
  65. 65.
    Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13), 7672–7677 (2003) Google Scholar
  66. 66.
    Ponting, C.: The functional repertoires of metazoan genomes. Nat. Rev. Genet. 9(9), 689–698 (2008) Google Scholar
  67. 67.
    Price, M., Dehal, P., Arkin, A.: Fasttree: computing large minimum-evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009) Google Scholar
  68. 68.
    Rajan, V., Xu, A., Lin, Y., Swenson, K., Moret, B.: Heuristics for the inversion median problem. Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10). BMC Bioinform. 11(Suppl. 1), S30 (2010) Google Scholar
  69. 69.
    Rajan, V., Lin, Y., Moret, B.: TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis. Bioinformatics 28(24), 3324–3325 (2012) Google Scholar
  70. 70.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987) Google Scholar
  71. 71.
    Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1), 35–42 (1975) MathSciNetMATHGoogle Scholar
  72. 72.
    Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Proc. 3rd Ann. Symp. Combin. Pattern Matching (CPM’92). Lecture Notes in Comp. Sci., vol. 644, pp. 121–135. Springer, Berlin (1992) Google Scholar
  73. 73.
    Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Proc. 3rd Conf. Computing and Combinatorics (COCOON’97). Lecture Notes in Comp. Sci., vol. 1276, pp. 251–264. Springer, Berlin (1997) Google Scholar
  74. 74.
    Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5, 555–570 (1998) Google Scholar
  75. 75.
    Sankoff, D., Blanchette, M.: Phylogenetic invariants for metazoan mitochondrial genome evolution. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 22–31. Univ. Academy Press, Tokyo (1998) Google Scholar
  76. 76.
    Sankoff, D., Goldstein, M.: Probabilistic models for genome shuffling. Bull. Math. Biol. 51, 117–124 (1989) MathSciNetMATHGoogle Scholar
  77. 77.
    Sankoff, D., Nadeau, J.: Conserved synteny as a measure of genomic distance. Discrete Appl. Math. 71(1–3), 247–257 (1996) MathSciNetMATHGoogle Scholar
  78. 78.
    Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families. Kluwer Academic, Dordrecht (2000) Google Scholar
  79. 79.
    Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in genome sequence rearrangement. In: Proc. 9th Int’l Conf. Comput. Mol. Biol. (RECOMB’05). Lecture Notes in Comp. Sci., vol. 3388, pp. 30–35. Springer, Berlin (2005) Google Scholar
  80. 80.
    Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrangement. In: Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods in Enzymology, vol. 183, pp. 428–438. Academic Press, San Diego (1990) Google Scholar
  81. 81.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89(14), 6575–6579 (1992) Google Scholar
  82. 82.
    Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012) Google Scholar
  83. 83.
    Siepel, A., Moret, B.: Finding an optimal inversion median: experimental results. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 189–203. Springer, Berlin (2001) Google Scholar
  84. 84.
    da Silva, P.H., Braga, M.D.V., Machado, R., Dantas, S.: DCJ-indel distance with distinct operation costs. In: Proc. 12th Workshop Algs. in Bioinf. (WABI’12). Lecture Notes in Comp. Sci., vol. 7534, pp. 378–390. Springer, Berlin (2012) Google Scholar
  85. 85.
    Srivastava, M., et al.: The functional repertoires of metazoan genomes. Nature 454(7207), 955–960 (2008) Google Scholar
  86. 86.
    Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006) Google Scholar
  87. 87.
    Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of Drosophila pseudoobscura and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22, 448–450 (1936) Google Scholar
  88. 88.
    Swenson, K., Marron, M., Earnest-DeYoung, J., Moret, B.: Approximating the true evolutionary distance between two genomes. ACM J. Experimental Algorithmics 12 (2008) Google Scholar
  89. 89.
    Swenson, K., Lin, Y., Rajan, V., Moret, B.: Hurdles and sorting by inversions: combinatorial, statistical, and experimental results. J. Comput. Biol. 16(10), 1339–1351 (2009) MathSciNetGoogle Scholar
  90. 90.
    Tang, J., Moret, B.: Scaling up accurate phylogenetic reconstruction from gene-order data. In: Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’03). Bioinformatics, vol. 19, pp. i305–i312. Oxford Univ. Press, London (2003) Google Scholar
  91. 91.
    Tang, J., Moret, B.: Linear programming for phylogenetic reconstruction based on gene rearrangements. In: Proc. 16th Ann. Symp. Combin. Pattern Matching (CPM’05). Lecture Notes in Comp. Sci., vol. 3537, pp. 406–416. Springer, Berlin (2005) Google Scholar
  92. 92.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving problems. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes in Comp. Sci., vol. 5251, pp. 1–13. Springer, Berlin (2008) Google Scholar
  93. 93.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 63(5), 587–609 (2002) MathSciNetGoogle Scholar
  94. 94.
    Wang, L.S.: Exact-IEBP: a new technique for estimating evolutionary distances between whole genomes. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 175–188. Springer, Berlin (2001) Google Scholar
  95. 95.
    Wang, L.S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proc. 33rd Ann. ACM Symp. Theory of Comput. (STOC’01), pp. 637–646. ACM Press, New York (2001) Google Scholar
  96. 96.
    Wang, L.S., Warnow, T.: Distance-based genome rearrangement phylogeny. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 353–383. Oxford Univ. Press, London (2005) Google Scholar
  97. 97.
    Wang, L.S., Jansen, R., Moret, B., Raubeson, L., Warnow, T.: Fast phylogenetic methods for genome rearrangement evolution: an empirical study. In: Proc. 7th Pacific Symp. on Biocomputing (PSB’02), pp. 524–535. World Scientific, Singapore (2002) Google Scholar
  98. 98.
    Wang, H., Xu, Z., Gao, L., Hao, B.: A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9(1), 195 (2009) Google Scholar
  99. 99.
    Wang, L.S., Leebens-Mack, J., Wall, P., Beckmann, K., dePamphilis, C., Warnow, T.: The impact of multiple protein sequence alignment on phylogenetic estimation. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1108–1119 (2011) Google Scholar
  100. 100.
    Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor. Biol. 99(1), 1–7 (1982) Google Scholar
  101. 101.
    Xu, A., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes in Comp. Sci., vol. 5251, pp. 25–37. Springer, Berlin (2008) Google Scholar
  102. 102.
    Xu, A.: A fast and exact algorithm for the median of three problem—a graph decomposition approach. J. Comput. Biol. 16(10), 1369–1381 (2009) MathSciNetGoogle Scholar
  103. 103.
    Xu, A., Moret, B.: GASTS: parsimony scoring under rearrangements. In: Proc. 11th Workshop Algs. in Bioinf. (WABI’11). Lecture Notes in Comp. Sci., vol. 6833, pp. 351–363. Springer, Berlin (2011) Google Scholar
  104. 104.
    Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications by DCJ. In: Proc. 6th RECOMB Workshop Comp. Genomics (RECOMB-CG’08). Lecture Notes in Comp. Sci., vol. 5267, pp. 170–183. Springer, Berlin (2008) Google Scholar
  105. 105.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005) Google Scholar
  106. 106.
    Zhang, M., Arndt, W., Tang, J.: A branch-and-bound method for the multichromosomal reversal median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08), pp. 1–13 (2008) Google Scholar
  107. 107.
    Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’08). Bioinformatics, vol. 24, pp. i96–i104 (2008) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Laboratory for Computational Biology and BioinformaticsEPFLLausanneSwitzerland
  2. 2.Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations