The Genesis of the DCJ Formula

Part of the Computational Biology book series (COBO, volume 19)

Abstract

The formula N−(C+I/2) to compute the number of Double-Cut-and-Join operations needed to transform one genome into another is both simple and easy to prove. When it was published, in 2006, we omitted all details on how it was constructed. In this chapter, we will give an elementary treatment on the intuitions and methods underlying the formula, showing that simplicity is sometimes difficult to achieve. We will also prove that this formula is one among an infinite number of candidates, and that the techniques can be applied to other genomic distances.

Keywords

Sorting Tamed Salon 

References

  1. 1.
    Bergeron, A., Medvedev, P., Stoye, J.: Rearrangement models and single-cut operations. J. Comput. Biol. 17(9), 1213–1225 (2010) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proceedings of WABI 2006. LNBI, vol. 4175, pp. 163–173 (2006) Google Scholar
  3. 3.
    Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of drosophila pseudoobscura. Genetics 23(1), 28–64 (1938) Google Scholar
  4. 4.
    Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011) CrossRefGoogle Scholar
  5. 5.
    Feijão, P., Meidanis, J.: Extending the algebraic formalism for genome rearrangements to include linear chromosomes. In: Proceedings of BSB 2012. LNBI, vol. 7409, pp. 13–24 (2012) Google Scholar
  6. 6.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995) Google Scholar
  7. 7.
    Meidanis, J., Dias, Z.: An alternative algebraic formalism for genome rearrangements. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 213–223. Kluwer Academic, Dordrecht (2000) CrossRefGoogle Scholar
  8. 8.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10, 120 (2009) CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.LacimUniversité du Québec à MontréalMontréalCanada
  2. 2.Technische FakultätUniversität BielefeldBielefeldGermany

Personalised recommendations