Skip to main content

Thermodynamic Engine Optimization

  • Chapter
  • First Online:
  • 1162 Accesses

Abstract

In this chapter, we show how the capabilities of numerical simulations and theoretical finite-time thermodynamics tools complement each other to optimize the performance of a spark ignition engine. Numerical simulations enable us to check the influence of specific parameters in engine operation, whereas theoretical techniques allow us to suggest possible optimization criteria and help to understand their consequences from a physical viewpoint in terms of the main sources of irreversibility. The analysis of power-efficiency curves plays a central role, because they provide a direct way to obtain maximum efficiency for any particular power requirement. In this optimization process, we consider both design and operation parameters such as the location of the ignition kernel, stroke-to-bore ratio, spark advance, fuel–air (equivalence) ratio, and cylinder wall temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We recall here that the considered piston bore is \(96\) mm (see Table G.5 in Appendix G).

  2. 2.

    Note that in the limit \(\omega \rightarrow 0\), the thermodynamic cycle developed by the engine corresponds to the Otto reversible cycle (performed in an infinite time), and in this case \({\overline{\varphi }}_0^P\) should be \(360^\circ \), i.e., combustion begins when piston is at TC. In our case, this limit yields to a slightly different value due to the bi-parametric linear fitting procedure.

  3. 3.

    In this chapter, for optimization purposes, the fuel conversion efficiency is defined as the ratio between the power output per cycle and the chemical energy released. In addition, for fixed values of the chemical energy and the engine speed, maximum efficiency optimization corresponds to maximum brake torque optimization (MBT timing).

  4. 4.

    Probably, the most adequate region for the stationary operation of any heat engine as argued by Chen [1618].

References

  1. P.L. Curto-Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 105, 094904 (2009)

    Google Scholar 

  2. P.L. Curto-Risso, A. Medina, A. Calvo Hernández, Appl. Therm. Eng. 31, 803 (2011)

    Google Scholar 

  3. M. Modarres Razavi, A. Hosseini, M. Dehnavi, ASME Internal-Combustion-Engine-Division Fall Technical Conference 2009, Lucerne, Switzerland, http://www.dsy.hu/thermo/razavi/Razavi_Spark2.pdf (2010)

  4. C. Taylor, The Internal Combustion Engine in Theory and Practice, vol. I (The MIT Press, Cambridge, 1994)

    Google Scholar 

  5. P.L. Curto-Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 104, 094911 (2008)

    Article  Google Scholar 

  6. R. Stone, Introduction to Internal Combustion Engines (Macmillan Press, London, 1999), Chap. 4, pp. 142–155

    Google Scholar 

  7. R. Siewert, SAE Trans. 87, 3637 (1978)

    Google Scholar 

  8. F. Freudenstein, E. Maki, Variable-displacement piston engine, US Patent 4.270.495 (1981)

    Google Scholar 

  9. J. Yamin, M. Dado, Appl. Energ. 77, 447 (2004)

    Article  Google Scholar 

  10. J. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), Chap. 2, pp. 42–45

    Google Scholar 

  11. P.L. Curto-Risso, Numerical simulation and theoretical model for an irreversible Otto cycles. Ph.D. thesis, Universidad de Salamanca, Spain, http://campus.usal.es/gtfe/ (2009)

  12. D. Descieux, M. Feidt, Appl. Therm. Eng. 27, 1457 (2007)

    Article  Google Scholar 

  13. J. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), Chap. 15, pp. 827–829

    Google Scholar 

  14. L. Guzzella, C.H. Onder, Introduction to Modeling and Control of Internal Combustion Engine Systems (Springer, Berlin, 2004)

    Book  Google Scholar 

  15. R. Stone, Introduction to Internal Combustion Engines (Macmillan Press, London, 1999), Chap. 10, pp. 429–433

    Google Scholar 

  16. J. Chen, J. Phys. D: Appl. Phys. 27, 1144 (1994)

    Article  Google Scholar 

  17. A. Calvo Hernández, A. Medina, J.M.M. Roco, J.A. White, S. Velasco, Phys. Rev. E. 63, 037102 (2001)

    Google Scholar 

  18. S. Sánchez-Orgaz, A. Medina, A. Calvo Hernández, Energ. Convers. Manage. 51, 2134 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Medina .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Medina, A., Curto-Risso, P.L., Hernández, A.C., Guzmán-Vargas, L., Angulo-Brown, F., Sen, A.K. (2014). Thermodynamic Engine Optimization. In: Quasi-Dimensional Simulation of Spark Ignition Engines. Springer, London. https://doi.org/10.1007/978-1-4471-5289-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5289-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5288-0

  • Online ISBN: 978-1-4471-5289-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics