Skip to main content

Interspinous Devices: State of the Art

  • Chapter
  • First Online:
Minimally Invasive Surgery of the Lumbar Spine

Abstract

Interspinous devices are in the class of medical devices that can be implanted in the lumbosacral spine using a minimal and often mini-invasive approach. Because their use has boomed over the last decade, we can state with confidence that this technological sector attracts a great deal of interest in a quest for techniques and materials able to reduce the invasiveness of the surgical procedure and increase its general bio-compatibility. An initial classification of interspinous devices from a biomechanical viewpoint may be carried out by assessing the rigidity of the distraction element (Table 1, Appendix). This identifies devices that are inaccurately categorized as nondeformable, involving the insertion of material with high mechanical rigidity into the space between the spinous process, where the distraction between the spinous processes may be considered constant. In other devices, a material with a shock-absorbing function is inserted between the spinous processes, which then undergoes appreciable elastic or visco-elastic deformation under physiological loads to increase bone implant compliance. In parallel with this sub-category, there are also devices that work by rigid stabilization of the interspinous space where stable posterior interspinous fusion is brought about by applying autologous or homologous bone and cruentation of the spinous processes. Clinical trials on interspinous devices available in the literature show a good relationship between the benefits for the patient and the use of resources in the disease treatment. Nevertheless, there is still margin for clinical investigation and for the establishment of verification and validation procedures of these devices in order to clearly define the relationship between the effects on the biomechanics of the functional unit and the clinical indications of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapandji I. The physiology of the joints. In: The trunk and the vertebral column, vol. 3. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  2. Wnek G, Bowlin G. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare; 2008.

    Google Scholar 

  3. Richards J, Majumdar S, Lindsey D, Beaupre G, Yerby S. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine. 2005;30(7):744.

    Article  PubMed  Google Scholar 

  4. Siddiqui M, Karadimas E, Nicol M, Smith F, Wardlaw D. Influence of X-STOP on neural foramina and spinal canal area in spinal stenosis. Spine. 2006;31(25):2958.

    Article  PubMed  Google Scholar 

  5. Bono C, Vaccaro A. Interspinous process devices in the lumbar spine. J Spinal Disord Tech. 2007;20(3):255.

    Article  PubMed  Google Scholar 

  6. Siddiqui M, Karadimas E, Nicol M. Effects of X-STOP device on sagittal lumbar spine kine-matics in spinal stenosis. J Spinal Disord Tech. 2006;19(5):328–33.

    Article  PubMed  Google Scholar 

  7. Wilke H, Drumm J, Haussler K, Mack C, Steudel W, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J. 2008;17(8):1049–56.

    Article  PubMed  Google Scholar 

  8. Lindsey D, Swanson K, Fuchs P, Hsu K, Zucherman J, Yerby S. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine. 2003;28(19):2192.

    Article  PubMed  Google Scholar 

  9. Kim D, Cammisa F, Fessler R. Dynamic reconstruction of the spine. New York: Thieme Medical Pub; 2006.

    Google Scholar 

  10. Wittenberg R, Shea M, Swartz D, Lee K, White III A, Hayes W. Importance of bone mineral density in instrumented spine fusions. Spine. 1991;16(6):647.

    Article  PubMed  CAS  Google Scholar 

  11. Callaghan J, Pada A, McGill S. Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin Biomech. 1999;14(3):203–16.

    Article  CAS  Google Scholar 

  12. Shepherd D, Leahy J, Mathias K, Wilkinson S, Hukins D. Spinous process strength. Spine. 2000;25(3):319.

    Article  PubMed  CAS  Google Scholar 

  13. Tal war V, Lindsey D, Fredrick A, Hsu K, Zucherman J, Yerby S. Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication. Eur Spine J. 2006;15(6):908–12.

    Article  Google Scholar 

  14. Adams M, Dolan P. Recent advances in lumbar spinal mechanics and their clinical significance. Clin Biomech. 1995;10(I):3–19.

    Article  Google Scholar 

  15. Adams M, McNally D, Dolan P. Stress distributions inside intervertebral discs. J Bone Joint Surg Br. 1996;78:965–72.

    Article  PubMed  CAS  Google Scholar 

  16. Boos N, Aebi M. Spinal disorders: fundamentals of diagnosis and treatment. Berlin/New York: Springer; 2007.

    Google Scholar 

  17. Dunlop R, Adams M, Hutton W. Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br. 1984;66(5):706–10.

    PubMed  CAS  Google Scholar 

  18. Swanson K, Lindsey D, Hsu K, Zucherman J, Yerby S. The effects of an interspinous implant on intervertebral disc pressures. Spine. 2003;28(I):26.

    Article  PubMed  Google Scholar 

  19. Wiseman C, Lindsey D, Fredrick A, Yerby S. The effect of an interspinous process implant on facer loading during extension. Spine. 2005;30(8):903.

    Article  PubMed  Google Scholar 

  20. Sharma M, Langrana N, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine. 1995;20(8):887–900.

    Article  PubMed  CAS  Google Scholar 

  21. Adams M, Dolan P. Spine biomechanics. J Biomech. 2005;38(10):1972–83.

    Article  PubMed  Google Scholar 

  22. Kurtz S, Devine J. PEEK biomarerials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.

    Article  PubMed  CAS  Google Scholar 

  23. Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H. American Society for Testing and Materials. J Bone Joint Surg Am. 2006;88 Suppl 2:103–9.

    Article  PubMed  Google Scholar 

  24. Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications. Mater Sci Eng A. 1999;A273–275:149–160.

    Google Scholar 

  25. Vena P, Franzoso G, Gastaldi D, Contra R, Dallolio V. A finite element model of rhe L4-L5 spinal motion segment: biomechanical compatibility of an interspinous device. Comput Methods Biomech Biomed Engin. 2005;8(1):7–16.

    Article  PubMed  Google Scholar 

  26. Zhang Q, Teo E. Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys. 2008;30(10):1246–56.

    Article  PubMed  Google Scholar 

  27. Lafage V, Gangner N, Senegas J, Lavasre F, Skalli W. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine. 2007;32(16):1706.

    Article  PubMed  Google Scholar 

  28. Minns R, Walsh W. Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in rhe lumbar spine. Spine. 1997;22(16):1819.

    Article  PubMed  CAS  Google Scholar 

  29. Rohlmann A, Zander T, Burra N, Bergmann G. Effect of an interspinous implant on loads in the lumbar spine/Einuss eines interspinosen Implantars auf die Belasrungen der Lendenwirbelsaule. Biomed Tech (Berl). 2005;50(10):343–7.

    Article  CAS  Google Scholar 

  30. Kurtz S, Edidin A. Spine technology handbook. Amsterdam/Boston: Academic; 2006.

    Google Scholar 

  31. Louis W, Breck LW, Basom WC. The flexion treatment for low-back pain: indications, outline of conservative management, and a new spine-fusion procedure. J Bone Joint Surg Am. 1943;25:58–64.

    Google Scholar 

  32. Knowles FL. Apparatus for treatment of the spinal column. Patented I954 n.2677369.

    Google Scholar 

  33. Sénégas J. La ligamentoplastie intervertébrale, alternative à l’arthrodèse dans le traitement des instabilitiés dégénératives. Acta Orthop Belg. 1991;57 Suppl 1:221–6.

    PubMed  Google Scholar 

  34. Sénégas J, Etchevers JP, Baulny D, Grenier F. Widening of the lumbar vertebral canal as an alter-native to laminectomy, in the treatment of lumbar stenosis. Fr J Orthop Surg. 1988;2:93–9.

    Google Scholar 

  35. Sénégas J, Vital JM, Guérin J, Bernard P, M’Barek M, Loreiro M, Bouvet R. Stabilisation lombaire souple. In: Gastambide D, editor. GlEDA: instabilités vertébrales lombaires. Paris: Expansion Scientifique Française; 1995. p. 122–32.

    Google Scholar 

  36. Pfirrman CWA, Metzdorf A, Zanetti M, Hadler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:4873–8.

    Article  Google Scholar 

  37. Taylor J, Ritland S. Technical and Anatomical Consideration fot the Placement of a Posterior Interspinous Stabilizer. H.M.Mayer (ed.) Minimally Invasive Spine Surgery Second Edition 2006:466–75.

    Google Scholar 

  38. Katz JN. Lumbar spinal fusion. Surgical rates, costs, and complications. Spine. 1995;20(24 Suppl):78S–83.

    Article  PubMed  CAS  Google Scholar 

  39. Sengupta OK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am. 2004;35(1):43–56.

    Article  PubMed  Google Scholar 

  40. Christie SD, Song JK, Fessler RG. Dynamic interspinous process technology. Spine. 2005;30(16 Suppl):S73–8.

    Article  PubMed  Google Scholar 

  41. Jerosch J, Moursi MG. Foreign body reaction due to polyethylene’s wear after implantation of an interspinal segment. Arch Orthop Trauma Surg. 2008;128(1):1–4.

    Article  PubMed  Google Scholar 

  42. Fairbank JC, Pynsent PB. The Oswestry disability index. Spine. 2000;25(22):2940–52.

    Article  PubMed  CAS  Google Scholar 

  43. Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, lmplicito DA, Martin MJ, Johnson 2nd DR, Skidmore GA, Vessa PP, Dwyer JW, Puccio S, Cauthen JC, Ozuna RM. A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X-STOP interspinous implant: 1-year results. Eur Spine J. 2004;13(1):22–31.

    Article  PubMed  CAS  Google Scholar 

  44. Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, lmplicito DA, Martin MJ, Johnson 2nd DR, Skidmore GA, Vessa PP, Dwyer JW, Puccio ST, Cauthen JC, Ozuna RM. A multicenter, prospective, randomized trial evaluating the X-STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine. 2005;30(12):1351–8.

    Article  PubMed  Google Scholar 

  45. Schönström N, Lindahl S, Willen J, Hansson T. Dynamic changes in the dimension of the lumbar spinal canal: an experimental study in vitro. J Orthop Res. 1989;7(1):115–21.

    Article  PubMed  Google Scholar 

  46. Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, Nowicki BH. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996;21(21):2412–20.

    Article  PubMed  CAS  Google Scholar 

  47. Verhoof OJ, Bron JL, Wapstra FH, van Royen BJ. High failure rate of the interspinous distraction device (X-STOP) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17(2):188–92.

    Article  PubMed  Google Scholar 

  48. Schwarzenbach O, Berlemann U, Stoll TM, Dubois G. Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am. 2005;36(3):363–72.

    Article  PubMed  Google Scholar 

  49. Serkan I. Posterior dynamic stabilization of the lumbar spine. WSJ. 2007;1(2):62–7.

    Google Scholar 

  50. Khoueir P, Kim K, Wang M. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.

    Article  PubMed  Google Scholar 

  51. Whitesides TE. The effect of an interspinous implant on vertebral disc pressures (letter). Spine. 2003;28:1906–8.

    Article  PubMed  Google Scholar 

  52. Chiu JC. Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Technol Int. 2006;15:265–75.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Calvosa MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Giannetti, C., Bartalesi, R., Tenucci, M., Galgani, M., Calvosa, G. (2014). Interspinous Devices: State of the Art. In: Menchetti, P. (eds) Minimally Invasive Surgery of the Lumbar Spine. Springer, London. https://doi.org/10.1007/978-1-4471-5280-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5280-4_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5279-8

  • Online ISBN: 978-1-4471-5280-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics