Skip to main content

Flow Perturbation Experiments

  • Chapter
  • First Online:
The Heart and Circulation
  • 1680 Accesses

Abstract

On account of relative ease of accessibility, the early embryo circulation is an eminently suitable model, which can help unravel the age-old question of the relative importance of the peripheral circulation, versus that of the heart. Its “simplified” morphological plan, i.e., the absence of valves and lack of innervation, serves as additional advantages over its mature counterpart. Finally, the embryonic and extraembryonic circulations occur on a single plane, rendering the force of gravity almost negligible, in comparison to a horizontally placed animal or vertically oriented human circulatory system. We will now examine several studies where the fundamental question of heart versus circulation has been addressed by the investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    Article  PubMed  CAS  Google Scholar 

  2. Hove JAYR. Quantifying cardiovascular flow dynamics during early development. Pediatr Res. 2006;60(1):6.

    Article  PubMed  Google Scholar 

  3. Orts LF, Puerta FJ, Sobrado PJ. The morphogenesis of the ventricular flow pathways in man. Arch Anat Histol Embryol. 1980;63:5.

    Google Scholar 

  4. Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939.

    Article  PubMed  CAS  Google Scholar 

  5. Chen JN, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123(1):293.

    PubMed  CAS  Google Scholar 

  6. Broekhuizen M, et al. Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet Gynecol. 1999;13(6):437–45.

    Article  PubMed  CAS  Google Scholar 

  7. Hogers B, et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997;80(4):473.

    Article  PubMed  CAS  Google Scholar 

  8. Stekelenburg-de Vos S, et al. Acutely altered hemodynamics following venous obstruction in the early chick embryo. J Exp Biol. 2003;206(6):1051.

    Article  PubMed  Google Scholar 

  9. Ursem NTC, et al. Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. J Exp Biol. 2004;207(9):1487.

    Article  PubMed  Google Scholar 

  10. Wagman A, Hu N, Clark EB. Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. Circ Res. 1990;67(1):187–92.

    Article  PubMed  CAS  Google Scholar 

  11. Houweling AC, et al. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec. 2002;266(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  12. Toshimori H, et al. Chicken atrial natriuretic peptide (chANP) and its secretion. Cell Tissue Res. 1990;259(2):293–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nakazawa M, et al. Effect of atrial natriuretic peptide on hemodynamics of the stage 21 chick embryo. Pediatr Res. 1990;27(6):557.

    Article  PubMed  CAS  Google Scholar 

  14. Hu N, et al. Effect of atrial natriuretic peptide on diastolic filling in the stage 21 chick embryo. Pediatr Res. 1995;37(4):465.

    Article  PubMed  CAS  Google Scholar 

  15. Bowers PN, Tinney JP, Keller BB. Nitroprusside selectively reduces ventricular preload in the stage 21 chick embryo. Cardiovasc Res. 1996;31(supp1):E132.

    Article  PubMed  CAS  Google Scholar 

  16. Li K, Sirois P, Rouleau J. Role of endothelial cells in cardiovascular function. Life Sci. 1994;54(9):579–92.

    Article  PubMed  CAS  Google Scholar 

  17. Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  PubMed  CAS  Google Scholar 

  18. Inoue A, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86(8):2863.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Furst, B. (2014). Flow Perturbation Experiments. In: The Heart and Circulation. Springer, London. https://doi.org/10.1007/978-1-4471-5277-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5277-4_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5276-7

  • Online ISBN: 978-1-4471-5277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics