Skip to main content

The Onset of Circulation

  • Chapter
  • First Online:
  • 1703 Accesses

Abstract

It is generally assumed that the blood begins to move as soon as the heart begins its contractile activity. Evidence suggests that there is a marked variability between the onset of the heartbeat and movement of the blood. It further points to a complex relation which exists between the first movement of plasma and the red blood cells. In order to further elucidate this intricate phenomenon, we will take a closer look at the beginning of the circulation in chick, mouse, and zebrafish embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88(1):49–92.

    Article  Google Scholar 

  2. Hirota A, et al. Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording. J Physiol. 1985;369(1):209.

    PubMed  CAS  Google Scholar 

  3. Kamino K. Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev. 1991;71(1):53.

    PubMed  CAS  Google Scholar 

  4. Sakai T, Hirota A, Kamino K. Video-imaging assessment of initial beating patterns of the early embryonic chick heart. Jpn J Physiol. 1996;46(6):465–72.

    Article  PubMed  CAS  Google Scholar 

  5. Patten BM, Kramer TC. The initiation of contraction in the embryonic chick heart. Am J Anat. 1933;53(3):349–75.

    Article  Google Scholar 

  6. Patten BM. The first heart beats and the beginning of the embryonic circulation. Am Sci. 1951;39(2):224–43.

    Google Scholar 

  7. Sissman NJ. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol. 1970;25(2):141–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hogers B, et al. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res. 1995;76(5):871–7.

    Article  PubMed  CAS  Google Scholar 

  9. le Noble F, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004;131(2):361.

    Article  PubMed  Google Scholar 

  10. Romanoff AL, Romanoff AJ. Pathogenesis of the avian embryo: an analysis of causes of malformations and prenatal death. New York: Wiley-Interscience; 1972.

    Google Scholar 

  11. Carlson BM. Patten’s foundations of embryology. New York: McGraw-Hill; 1988.

    Google Scholar 

  12. Hirota A, et al. Initial development of conduction pattern of spontaneous action potential in early embryonic precontractile chick heart* 1. Dev Biol. 1983;99(2):517–23.

    Article  PubMed  CAS  Google Scholar 

  13. Christoffels VM, Burch JBE, Moorman AFM. Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med. 2004;14(8):301–7.

    Article  PubMed  Google Scholar 

  14. Sedmera D, et al. Developmental transitions in electrical activation patterns in chick embryonic heart. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):1001–9.

    Article  PubMed  Google Scholar 

  15. Houweling AC, et al. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec. 2002;266(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  16. Chapman W. The effect of the heart-beat upon the development of the vascular system in the chick. Am J Anat. 1918;23(1):175–203.

    Article  Google Scholar 

  17. Buschmann I, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010;137(13):2187.

    Article  PubMed  CAS  Google Scholar 

  18. Burggren WW. What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool. 2004;77(3):333–45.

    Article  PubMed  Google Scholar 

  19. Burggren WW, Warburton SJ, Slivkoff MD. Interruption of cardiac output does not affect short-term growth and metabolic rate in day 3 and 4 chick embryos. J Exp Biol. 2000;203(24):3831.

    PubMed  CAS  Google Scholar 

  20. Cirotto C, Arangi I. Chick embryo survival under acute carbon monoxide challenges. Comp Biochem Physiol A Physiol. 1989;94(1):117–23.

    Article  CAS  Google Scholar 

  21. Theiler K, Westphal H. The house mouse: atlas of embryonic development. New York: Springer; 1989.

    Google Scholar 

  22. Phoon CKL. Circulatory physiology in the developing embryo. Curr Opin Pediatr. 2001;13(5):456.

    Article  PubMed  CAS  Google Scholar 

  23. McGrath KE, et al. Circulation is established in a stepwise pattern in the mammalian embryo. Blood. 2003;101(5):1669.

    Article  PubMed  CAS  Google Scholar 

  24. Lucitti JL, et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317.

    Article  PubMed  CAS  Google Scholar 

  25. Phoon CKL, Turnbull DH. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol Genomics. 2003;14(1):3.

    PubMed  Google Scholar 

  26. Ji RP, et al. Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper. Circ Res. 2003;92(2):133.

    Article  PubMed  CAS  Google Scholar 

  27. Iida A, et al. Metalloprotease-dependent onset of blood circulation in zebrafish. Curr Biol. 2010;20(12):1110–6.

    Article  PubMed  CAS  Google Scholar 

  28. North TE, et al. Hematopoietic stem cell development is dependent on blood flow. Cell. 2009;137(4):736–48.

    Article  PubMed  CAS  Google Scholar 

  29. Palis J. Ontogeny of erythropoiesis. Curr Opin Hematol. 2008;15(3):155.

    Article  PubMed  Google Scholar 

  30. Goss CM. The physiology of the embryonic mammalian heart before circulation. Am J Physiol (Legacy Content). 1942;137(1):146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Furst, B. (2014). The Onset of Circulation. In: The Heart and Circulation. Springer, London. https://doi.org/10.1007/978-1-4471-5277-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5277-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5276-7

  • Online ISBN: 978-1-4471-5277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics