Advertisement

Regulation of Cardiac Output

  • Branko Furst
Chapter

Abstract

Models are used in order to simplify a group of observable events to readily understandable concepts. Over the years numerous models of circulation have been developed in an effort to elucidate fundamental hemodynamic principles. They attest to ingenuity on the part of investigators but also point to the complexity of the subject at hand. Because the heart is the organ which is thought to provide the total hydraulic energy to the blood, the idea of the heart as a pressure-generating pump is implicit in most commonly used models. Just how much of a role the heart plays in blood propulsion and the relative contribution of the peripheral circulation in the regulation of cardiac output continues, however, to be the subject of ongoing debate [1–5]. Because of the multitude of factors which contribute to regulation of cardiac output, the subject will be approached from the two commonly used perspectives: that of the heart and of the peripheral circulation [6].

Keywords

Cardiac Output Pulmonary Capillary Wedge Pressure Atrial Pressure Peripheral Circulation Right Atrial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1533.PubMedCrossRefGoogle Scholar
  2. 2.
    Magder S. Point:Counterpoint: The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1523–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Brengelmann G. Counterpoint: The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Brengelmann GL. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1532.PubMedCrossRefGoogle Scholar
  5. 5.
    Pinsky MR. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1528–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: W.B. Saunders Company; 1973. p. 253–62.Google Scholar
  7. 7.
    Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University Rochester Press; 2001.Google Scholar
  8. 8.
    Harvey W. On the generation of animals (Translated by R. Willis). In: Encycl. Britannica, Hutchins RM, editors. Great books of the western world. Chicago/London/Toronto: Encyclopedia Britannica; 1952. p. 429–32.Google Scholar
  9. 9.
    Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Siegel RE. Galen’s system of physiology and medicine. Basel/New York: Karger; 1968. p. 93, 159.Google Scholar
  11. 11.
    Harvey W. A second disquisition to John Riolan (Translated by R. Willis). In: Encycl. Britannica, Hutchins RM, editors. Great books of the western world. Chicago/London/Toronto: Encyclopedia Britannica; 1952. p. 313–28.Google Scholar
  12. 12.
    Harvey W. An anatomical disquisition on the motion of the heart and blood in animals (Translated by R. Willis). In: Encycl. Britannica, Hutchins RM, editors. Great books of the western world. Chicago/London/Toronto: Encyclopedia Britannica. 1952. p. 299–304.Google Scholar
  13. 13.
    Harvey W. An anatomical disquisition on the motion of the heart and blood in animals (Translated by R. Willis). In: Encycl. Britannica, Hutchins RM, editors. Great books of the western world. Chicago/London/Toronto: Encyclopedia Britannica. 1952. p. 285–6.Google Scholar
  14. 14.
    Wright T. Circulation: William Harvey’s revolutionary idea. London: Chatto & Windus; 2012. p. 205–9.Google Scholar
  15. 15.
    Fuchs T. The mechanization of the heart: Harvey and Descartes. Rochester: University Rochester Press; 2001. p. 114–41.Google Scholar
  16. 16.
    Hall TS. Ideas of life and matter: studies in the history of general physiology, 600 BC-1900 AD. Chicago: University of Chicago Press; 1969. p. 241–9.Google Scholar
  17. 17.
    Pickering G. Systemic arterial hypertension. In: Fishman AP, Richards DW, editors. Circulation of the blood men and ideas. Bethesda: American Physiological Society; 1982. p. 487–541.Google Scholar
  18. 18.
    Husemann F, Wolff O. The anthroposophical approach to medicine. Hudson: Anthroposophic Press; 1987. p. 298–414.Google Scholar
  19. 19.
    Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia/London: Lea & Fabiger; 1990. p. 12–53.Google Scholar
  20. 20.
    Fishman A. Dynamics of the pulmonary circulation. In: Handbook of physiology. Circulation, vol. 2. Washington D.C.: American Physiological Society; 1963. p. 1667–743.Google Scholar
  21. 21.
    Grodins FS, Stuart WH, Veenstra RL. Performance characteristics of the right heart bypass preparation. Am J Physiol (Legacy Content). 1960;198(3):552.Google Scholar
  22. 22.
    Herndon C, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Physiol (Legacy Content). 1969;217(1):65–72.Google Scholar
  23. 23.
    Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739.PubMedCrossRefGoogle Scholar
  24. 24.
    Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R447–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol Heart Circ Physiol. 1987;253(5):H993–1004.Google Scholar
  26. 26.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness?*. Chest. 2008;134(1):172–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Michard F. Volume management using dynamic parameters. Chest. 2005;128(4):1902–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Coudray A, et al. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757.PubMedCrossRefGoogle Scholar
  29. 29.
    Binanay C, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar A, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma TS, et al. Central venous pressure and pulmonary capillary wedge pressure: fresh clinical perspectives from a new model of discordant and concordant heart failure. Tex Heart Inst J. 2011;38(6):627.PubMedGoogle Scholar
  32. 32.
    Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Bernstein WH, et al. The interpretation of pulmonary artery wedge (pulmonary capillary) pressures. Br Heart J. 1960;22(1):37.PubMedCrossRefGoogle Scholar
  34. 34.
    Weed H. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100(4):1138–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Samet P, et al. Clinical and physiologic relationships in mitral valve disease. Circulation. 1959;19(4):517–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Cowley Jr AW, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28(3):321–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Stein E, et al. The relation of heart rate to cardiovascular dynamics. Pacing by atrial electrodes. Circulation. 1966;33(6):925.PubMedCrossRefGoogle Scholar
  38. 38.
    Ross Jr J, Linhart JW, Braunwald E. Effects of changing heart rate in man by electrical stimulation of the right atrium: studies at rest, during exercise, and with isoproterenol. Circulation. 1965;32(4):549–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Braunwald E, et al. Clinical observations on paired electrical stimulation of the heart: effects on ventricular performance and heart rate. Am J Med. 1964;37(5):700–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldberg LI. Use of sympathomimetic amines in heart failure. Am J Cardiol. 1968;22(2):177–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Elliott WC, Gorlin R. Isoproterenol in treatment of heart disease hemodynamic effects in circulatory failure. JAMA. 1966;197(5):315–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Bayram M, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol. 2005;96(6A):47G.PubMedCrossRefGoogle Scholar
  43. 43.
    Fonarow G. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4:S21.PubMedGoogle Scholar
  44. 44.
    Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Coons JC, McGraw M, Murali S. Pharmacotherapy for acute heart failure syndromes. Am J Health Syst Pharm. 2011;68(1):21–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Swedberg K, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005) The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26(11):1115–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Kantrowitz A, et al. Mechanical intraaortic cardiac assistance in cardiogenic shock: hemodynamic effects. Arch Surg. 1968;97(6):1000.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Connor CM, Rogers JG. Evidence for overturning the guidelines in cardiogenic shock. N Engl J Med. 2012;367(14):1349–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47(2):111–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre. Berichte ueber die Verhandlungen, Koenigl. Saechsische Gesellschaft der Wissenschaften, Leipzig. 1850. p. 164–204.Google Scholar
  52. 52.
    Jacobsohn E, Chorn R, O’Connor M. The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Can J Anesth. 1997;44(8):849–67.PubMedCrossRefGoogle Scholar
  53. 53.
    Starling EH. The Arris and Gale lectures on some points in the pathology of heart disease, lecture II. Lancet. 1897;149(3836):652–5.CrossRefGoogle Scholar
  54. 54.
    Bayliss W, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol. 1894;16(3–4):159.PubMedGoogle Scholar
  55. 55.
    Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green & Co.; 1918.Google Scholar
  56. 56.
    Starr I, Rawson A. Role of “static blood pressure” in abnormal increments of venous pressure, especially in hear failure. I. Theoretical studies on an improved circulation schema whose pumps obey Starling’s law of the heart. Am J Med Sci. 1940;199:27–39.CrossRefGoogle Scholar
  57. 57.
    Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.CrossRefGoogle Scholar
  58. 58.
    Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.PubMedGoogle Scholar
  59. 59.
    Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.PubMedGoogle Scholar
  60. 60.
    Guyton AC, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol (Legacy Content). 1957;189(3):609.Google Scholar
  61. 61.
    Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol (Legacy Content). 1955;180(3):463–8.Google Scholar
  62. 62.
    Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: W. B. Saunders Company; 1973. p. 175–80.Google Scholar
  63. 63.
    Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol (Legacy Content). 1954;179(2):261–7.Google Scholar
  64. 64.
    Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol. 2003;94(3):849.PubMedGoogle Scholar
  65. 65.
    Guyton AC. The relationship of cardiac output and arterial pressure control. Circulation. 1981;64(6):1079–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Caldini P, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34(5):606–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Sylvester J, Goldberg H, Permutt S. The role of the vasculature in the regulation of cardiac output. Clin Chest Med. 1983;4(2):111.PubMedGoogle Scholar
  68. 68.
    Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Boan J, Noordegraff A, Raines J, editors. Cardiovasuclar system dynamics. Cambridge/London: MIT Press; 1987. p. 465–79.Google Scholar
  69. 69.
    Maas JJ, et al. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients*. Crit Care Med. 2009;37(3):912.PubMedCrossRefGoogle Scholar
  70. 70.
    Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71.PubMedGoogle Scholar
  71. 71.
    Versprille A, et al. Mean systemic filling pressure as a characteristic pressure for venous return. Pflugers Arch. 1985;405(3):226–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Hiesmayr M, Jansen JRC, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pflügers Archiv European. J Physiol. 1996;431(5):741–7.Google Scholar
  73. 73.
    Schipke J, et al. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285(6):H2510.PubMedGoogle Scholar
  74. 74.
    Henderson WR, et al. Clinical review: Guyton-the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243.PubMedCrossRefGoogle Scholar
  75. 75.
    Guyton AC. Editor’s note, A. Guytons comment on Levy’s article The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):746–7.Google Scholar
  76. 76.
    Reddi B, Carpenter R. Venous excess: a new approach to cardiovascular control and its teaching. J Appl Physiol. 2005;98(1):356.PubMedCrossRefGoogle Scholar
  77. 77.
    Brengelmann G. Steady-state venous return: residue in a recent model analysis of the notion that it is driven by elastic recoil of the venous system. J Appl Physiol. 2009;107(1):369.PubMedCrossRefGoogle Scholar
  78. 78.
    Brengelmann GL. Learning opportunities in the study of Curran-Everett’s exploration of a classic paper on venous return. Adv Physiol Educ. 2008;32(3):242–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Department of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations