Skip to main content

A Thesaurus for Bioinspired Engineering Design

  • Chapter
  • First Online:
Biologically Inspired Design

Abstract

Biological systems provide insight into sustainable and adaptable design, which often leads to designs that are more elegant, efficient, and sustainable. There are, however, significant hurdles to performing bioinspired design. This chapter presents a design tool, the engineering-to-biology thesaurus, that addresses several challenges engineers may encounter when performing bioinspired design, allowing engineers without advanced biological knowledge to leverage nature’s ingenuity during engineering design. Along with the thesaurus tables, detailed information on the thesaurus model, structure, population, term placement, term placement review, and limitations is provided. Applications of the design tool are discussed. Examples are provided to demonstrate the goals and applications of the design tool followed by a review of integration with computational design tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Design Repository www.designengineeringlab.org.

References

  • Bar-Cohen Y (2006a) Biomimetics biologically inspired technologies. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  • Bar-Cohen Y (2006b) Biomimetics—using nature to inspire human innovation. J Bioinspiration Biomimetics 1:P1–P12

    Article  Google Scholar 

  • Benyus JM (1997) Biomimicry innovation inspired by nature. Morrow, New York

    Google Scholar 

  • Brebbia CA (2006) Design and nature III: comparing design in nature with science and engineering, vol 3. WIT, Southampton

    Google Scholar 

  • Brebbia CA (2008) Design & nature IV: comparing design in nature with science and engineering. WIT, Southampton

    Google Scholar 

  • Brebbia CA, Carpi A (2010) Design & nature V: comparing design in nature with science and engineering. WIT, Southampton

    Google Scholar 

  • Brebbia CA, Collins MW (2004) Design and nature II: comparing design in nature with science and engineering, vol 3. WIT, Southampton

    Google Scholar 

  • Brebbia CA, Sucharov LJ, Pascolo P (2002) Design and nature: comparing design in nature with science and engineering, vol 1. WIT, Southampton

    Google Scholar 

  • Brownell P (2010a) Engineering-to-biology thesaurus term check meeting. Nagel JKS. 8 Apr 2010, Corvallis

    Google Scholar 

  • Brownell P (2010b) Engineering-to-biology thesaurus term check and validation meeting. Nagel JKS. 4 May 2010, Corvallis

    Google Scholar 

  • Bruck HA, Gershon AL, Golden I, Gupta SK, Gyger LS Jr, Magrab EB, Spranklin BW (2007) Training mechanical engineering students to utilize biological inspiration during product development. Bioinspiration Biomimetics 2:S198–S209

    Article  Google Scholar 

  • Bryant Arnold CR, Stone RB, McAdams DA (2008) MEMIC: an interactive morphological matrix tool for automated concept generation. In: Mason JFaS (ed) Industrial engineering research conference

    Google Scholar 

  • Bryant C, Bohm M, McAdams D, Stone R (2007) An interactive morphological matrix computational design tool: a hybrid of two methods. Paper presented at the ASME 2007 IDETC/CIE, Las Vegas, NV

    Google Scholar 

  • Campbell NA, Reece JB (2003) Biology. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Chakrabarti A, Sarkar P, Leelavathamma B, Nataraju BS (2005) A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artif Intell Eng Des Anal Manuf 19:113–132

    Google Scholar 

  • Cheong H, Shu LH, Stone RB, McAdams DA (2008) Translating terms of the functional basis into biologically meaningful words. In: 2008 ASME IDETC/CIE, New York City, NY

    Google Scholar 

  • Chiu I, Shu LH (2007a) Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. AIEDAM 21(1):45–59

    Article  Google Scholar 

  • Chiu I, Shu LH (2007b) Using language as related stimuli for concept generation. AIEDAM 21(2):103–121

    Article  Google Scholar 

  • Cross N (2008) Engineering design methods: strategies for product design. Wiley, Chichester

    Google Scholar 

  • de Mestral G (1955) Velvet type fabric and method of producing same. USA Patent

    Google Scholar 

  • Design & Intelligence Laboratory (2010) Biologue. http://home.cc.gatech.edu/dil/336. Accessed 10 Dec 2012

  • Dieter GE, Schmidt LC (2009) Engineering design, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Dym CL, Little P (2004) Engineering design: a project-based introduction. Wiley, New York

    Google Scholar 

  • Eguchi E, Tominaga Y (1999) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Tokyo

    Google Scholar 

  • Forbes P (2006) The gecko’s foot: bio-inspiration: engineering new materials from nature. W. W. Norton & Co, New York

    Google Scholar 

  • Gero JS, Kannengiesser U (2002) The situated function—behaviour—structure framework. Artif Intell Des, pp 89–104

    Google Scholar 

  • Goel AK, Chandrasekaran B (1992) Case-based design: a task analysis. Artif Intell Approaches Eng Des 2:165–184

    Article  Google Scholar 

  • Goel AK, Rugaber S, Vattam S (2009) Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artif Intell Eng Des Anal Manuf 23(1):23–35

    Google Scholar 

  • Helms M, Vattam SS, Goel AK (2009) Biologically inspired design: products and processes. Des Stud 30(5):606–622

    Article  Google Scholar 

  • Hey J, Linsey J, Agogino AM, Wood KL (2008) Analogies and metaphors in creative design. Int J Eng Educ 24(2):283–294

    Google Scholar 

  • Hill B (1995) Bionic—element for fixing the aim and finding the solution in the technical problem solving process. In: IDATER 1995 conference, Loughborough University, Loughborough. http://hdl.handle.net/2134/1509

  • Hirtz J, Stone R, McAdams D, Szykman S, Wood K (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Design 13(2):65–82

    Google Scholar 

  • Hundal M (1990) A systematic method for developing function structures, solutions and concept variants. Mech Mach Theory 25(3):243–256

    Article  Google Scholar 

  • Hyman B (1998) Engineering design. Prentice-Hall, New Jersey

    Google Scholar 

  • Klowden MJ (2008) Physiological systems in insects. Academic Press, Oxford

    Google Scholar 

  • Lawrence E, Holmes S (1989) Henderson’s dictionary of biological terms. Wiley, New York

    Google Scholar 

  • Lindemann U, Gramann J (2004) Engineering design using biological principles. In: International design conference—DESIGN 2004, Dubrovnik

    Google Scholar 

  • Linsey F (2008a) Biological flow correspondent term check meeting. Stroble JK. 20 June 2008, Rolla

    Google Scholar 

  • Linsey F (2008b) Biological flow correspondent term check and validation meeting. Stroble JK. 10 July 2008, Rolla

    Google Scholar 

  • Little A, Wood K, McAdams D (1997) Functional analysis: a fundamental empirical study for reverse engineering, benchmarking and redesign. In: 1997 ASME IDETC/CIE, Sacramento, CA

    Google Scholar 

  • Lopez-Huertas MJ (1997) Thesaurus structure design: a conceptual approach for improved interaction. J Documentation 53(2):139–177

    Article  Google Scholar 

  • Mak TW, Shu LH (2004) Abstraction of biological analogies for design. CIRP Ann 531(1):117–120

    Article  Google Scholar 

  • Mak TW, Shu LH (2008) Using descriptions of biological phenomena for idea generation. Res Eng Design 19(1):21–28

    Article  Google Scholar 

  • Matrin E, Hine RS (2000) Oxford dictionary of biology. Oxford University Press, Oxford

    Google Scholar 

  • McKean E (2005) The new Oxford American dictionary. Oxford University Press, New York

    Google Scholar 

  • Mitchell BK (2003) Chemoreception. Encyclopedia of insects. Academic Press, Amsterdam, pp 169–174

    Google Scholar 

  • Møller AR (2003) Sensory systems: anatomy and physiology. Academic Press, Amsterdam

    Google Scholar 

  • Nachtigall W (1989) Konstructionen: Biologie und Technik. VDI, D¸sseldorf

    Google Scholar 

  • Nachtigall W (2000) The big book of bionics: new technologies, following the example of nature. German Verlags-Anstalt

    Google Scholar 

  • Nachtigall W (2002) Bionics: principles and examples for engineers and scientists. 2nd edn. Springer

    Google Scholar 

  • Nagel JKS, Stone RB (2012) A computational approach to biologically-inspired design. AIEDAM 26(2):0

    Article  Google Scholar 

  • Nagel R, Tinsley A, Midha P, McAdams D, Stone R, Shu L (2008) Exploring the use of functional models in biomimetic design. J Mech Des 130(12):11–23

    Article  Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010a) Exploring the use of category and scale to scope a biological functional model. In: 2010 ASME IDETC/CIE, Montreal, Quebec, Canada

    Google Scholar 

  • Nagel JKS, Nagel RL, Stone RB, McAdams DA (2010b) Function-based, biologically inspired concept generation. AIEDAM 24(4):521–535

    Article  Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010c) An engineering-to-biology thesaurus for engineering design. In: ASME IDETC/CIE 2010 DTM-28233, Montreal, Quebec, Canada

    Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010d) Exploring the use of category and scale to scope a biological functional model. In: ASME IDETC/CIE 2010, DTM-28873, Montreal, Quebec, Canada

    Google Scholar 

  • Nagel JKS, Nagel RL, Stone RB (2011) Abstracting biology in engineering design. Int J Des Eng 4(1):23–40

    Google Scholar 

  • Otto KN, Wood KL (2001) product design: techniques in reverse engineering and new product development. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design: a systematic approach, 3rd edn. Springer

    Google Scholar 

  • Sarkar P, Phaneendra S, Chakrabarti A (2008) Developing engineering products using inspiration from nature. J Comput Inf Sci Eng 8(3):1–9

    Article  Google Scholar 

  • Shu LH, Stone RB, McAdams DA, Greer JL (2007) Integrating function-based and biomimetic design for automatic concept generation. In: International conference on engineering design, Paris, France

    Google Scholar 

  • Srinivasan V, Chakrabarti A (2009) SAPPhIRE—an approach to analysis and synthesis. In: International conference on engineering design, Stanford, USA

    Google Scholar 

  • Srinivasan V, Chakrabarti A (2009) SAPPhIRE—an approach to analysis and synthesis. In: 3rd Symposium on research in product design, CPDM, IISc, Bangalore, India. doi:2-417

    Google Scholar 

  • Stone R, Wood K (2000) Development of a functional basis for design. J Mech Des 122(4):359–370

    Article  Google Scholar 

  • Stroble JK, Stone RB, Watkins SE (2009a) An overview of biomimetic sensor technology. Sens Rev 28(2):112–119

    Article  Google Scholar 

  • Stroble JK, Stone RB, McAdams DA (2009b) Conceptualization of biomimetic sensors through functional representation of natural sensing solutions. In: International conference of engineering design, Stanford, California

    Google Scholar 

  • Stroble JK, Stone RB, McAdams DA, Watkins SE (2009c) An engineering-to-biology thesaurus to promote better collaboration, creativity and discovery. In: CIRP design conference 2009, Cranfield, Bedfordshire, UK, pp 353–368

    Google Scholar 

  • Stroble JK, Stone RB, McAdams DA, Goeke MS, Watkins SE (2009d) Automated retrieval of non-engineering domain solutions to engineering problems. In: CIRP design conference 2009, Cranfield, Bedfordshire, UK, pp 78–85

    Google Scholar 

  • Szykman S, Racz J, Sriram R (1999) The representation of function in computer-based design. In: Proceedings of the ASME design theory and methodology conference, Las Vegas, NV

    Google Scholar 

  • The Biomimicry Institute (2009) Biomimicry: a tool for innovation. http://www.biomimicryinstitute.org/about-us/biomimicry-a-tool-for-innovation.html. Accessed 10 Oct 2009

  • Toko K (2000) Biomimetic sensor technology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tsujimoto K, Miura S, Tsumaya A, Nagai Y, Chakrabarti A, Taura T (2008) A method for creative behavioral design based on analogy and blending from natural things. In: 2008 ASME IDETC/CIE, New York, USA. DETC2008-49389

    Google Scholar 

  • Ullman DG (2009) The mechanical design process, 4th edn. McGraw-Hill, Inc., New York

    Google Scholar 

  • Ulrich KT, Eppinger SD (2004) Product design and development. McGraw-Hill/Irwin, Boston

    Google Scholar 

  • Umeda Y, Takeda H, Tomiyama T, Yoshikawa H (1990) Function, behaviour, and structure. AIENG’90 Applications of AI in Engineering, pp 177–193

    Google Scholar 

  • Vakili V, Shu LH (2001) Towards biomimetic concept generation. In: 2001 ASME IDETC/CIE, Pittsburgh, Pennsylvania

    Google Scholar 

  • Vakili V, Shu LH (2007) Including functional models of biological phenomena as design stimuli. In: 2007 ASME IDETC/CIE, Las Vegas, NV

    Google Scholar 

  • Vattam S, Helms M, Goel A (2010a) A content account of creative analogies in biologically inspired design. AIEDAM 24:467–481

    Article  Google Scholar 

  • Vattam S, Wiltgen B, Helms M, Goel A, Yen J (2010b) DANE: fostering creativity in and through biologically inspired design. In: Proceedings of first international conference on design creativity, Kobe, Japan, pp 127–132

    Google Scholar 

  • Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl A-K (2006) Biomimetics: its practice and theory. J R Soc Interface 3:471–482

    Article  Google Scholar 

  • Voland G (2004) Engineering by design, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Wilson JO, Rosen D (2007) Systematic reverse engineering of biological systems. In: 2007 ASME IDETC/CIE, Las Vegas, Nevada

    Google Scholar 

  • Wilson J, Chang P, Yim S, Rosen D (2009) Developing a bio-inspired design repository using ontologies. In: 2009 ASME IDETC/CIE, California, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquelyn K. S. Nagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nagel, J.K.S. (2014). A Thesaurus for Bioinspired Engineering Design. In: Goel, A., McAdams, D., Stone, R. (eds) Biologically Inspired Design. Springer, London. https://doi.org/10.1007/978-1-4471-5248-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5248-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5247-7

  • Online ISBN: 978-1-4471-5248-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics