Skip to main content

Remodeling of Epicardial Coronary Vessels

  • Chapter
  • First Online:

Abstract

Coronary angiography is the main instrument used to evaluate the presence of stenoses caused by coronary atherosclerosis. An angiogram is a luminogram delineating the shape of the contrast-filled lumen, but it does not supply information about the vessel wall. It has long been recognized that segments with an angiographically “normal” appearance (i.e., without stenosis) may have atheroma when evaluated with more detailed pathology-based tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  2. Sipahi I, Tuzcu EM, Schoenhagen P, Nicholls SJ, Chen MS, Crowe T, Loyd AB, Kapadia S, Nissen SE. Paradoxical increase in lumen size during progression of coronary atherosclerosis: observations from the REVERSAL trial. Atherosclerosis. 2006;189:229–35.

    Article  CAS  PubMed  Google Scholar 

  3. Hermiller JB, Tenaglia AN, Kisslo KB, Phillips HR, Bashore TM, Stack RS, Davidson CJ. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol. 1993;71:665–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation. 1997;95:1791–8.

    Article  CAS  PubMed  Google Scholar 

  5. Dangas G, Mintz GS, Mehran R, Lansky AJ, Kornowski R, Pichard AD, Satler LF, Kent KM, Stone GW, Leon MB. Preintervention arterial remodeling as an independent predictor of target-lesion revascularization after nonstent coronary intervention: an analysis of 777 lesions with intravascular ultrasound imaging. Circulation. 1999;99:3149–54.

    Article  CAS  PubMed  Google Scholar 

  6. Inaba S, Mintz GS, Shimizu T, Weisz G, Mehran R, Marso SP, Xu K, de Bruyne B, Serruys PW, Stone GW, Maehara A. Compensatory enlargement of the left main coronary artery: insights from the PROSPECT study. Coron Artery Dis. 2014;25:98–103.

    Article  PubMed  Google Scholar 

  7. Hernando L, Corros C, Gonzalo N, Hernandez-Antolin R, Banuelos C, Jimenez-Quevedo P, Bernardo E, Fernandez-Ortiz A, Escaned J, Macaya C, Alfonso F. Morphological characteristics of culprit coronary lesions according to clinical presentation: insights from a multimodality imaging approach. Int J Cardiovasc Imaging. 2013;29:13–21.

    Article  PubMed  Google Scholar 

  8. Tanaka M, Tomiyasu K, Fukui M, Akabame S, Kobayashi-Takenaka Y, Nakano K, Kadono M, Hasegawa G, Oda Y, Nakamura N. Evaluation of characteristics and degree of remodeling in coronary atherosclerotic lesions by 64-detector multislice computed tomography (MSCT). Atherosclerosis. 2009;203:436–41.

    Article  CAS  PubMed  Google Scholar 

  9. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, Tanimoto T, Takemoto K, Takarada S, Kubo T, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2:1412–9.

    Article  PubMed  Google Scholar 

  10. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  11. Hibi K, Ward MR, Honda Y, Suzuki T, Jeremias A, Okura H, Hassan AH, Maehara A, Yeung AC, Pasterkamp G, Fitzgerald PJ, Yock PG. Impact of different definitions on the interpretation of coronary remodeling determined by intravascular ultrasound. Catheter Cardiovasc Interv. 2005;65:233–9.

    Article  PubMed  Google Scholar 

  12. Sipahi I, Tuzcu EM, Schoenhagen P, Nicholls SJ, Crowe T, Kapadia S, Nissen SE. Static and serial assessments of coronary arterial remodeling are discordant: an intravascular ultrasound analysis from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am Heart J. 2006;152:544–50.

    Article  CAS  PubMed  Google Scholar 

  13. Jensen LO, Thayssen P, Mintz GS, Maeng M, Junker A, Galloe A, Christiansen EH, Hoffmann SK, Pedersen KE, Hansen HS, Hansen KN. Intravascular ultrasound assessment of remodelling and reference segment plaque burden in type-2 diabetic patients. Eur Heart J. 2007;28:1759–64.

    Article  PubMed  Google Scholar 

  14. Ye S, Humphries S, Henney A. Matrix metalloproteinases: implication in vascular matrix remodelling during atherogenesis. Clin Sci (Lond). 1998;94:103–10.

    Article  CAS  Google Scholar 

  15. Schoenhagen P, Vince DG, Ziada KM, Kapadia SR, Lauer MA, Crowe TD, Nissen SE, Tuzcu EM. Relation of matrix-metalloproteinase 3 found in coronary lesion samples retrieved by directional coronary atherectomy to intravascular ultrasound observations on coronary remodeling. Am J Cardiol. 2002;89:1354–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157–63.

    Article  CAS  PubMed  Google Scholar 

  17. Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A. Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO. Arterioscler Thromb Vasc Biol. 2000;20:E120–6.

    Article  CAS  PubMed  Google Scholar 

  18. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol. 1995;15:2–10.

    Article  CAS  PubMed  Google Scholar 

  19. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, Sukhova GK, Libby P. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97:2433–44.

    Article  CAS  PubMed  Google Scholar 

  20. Tauth J, Pinnow E, Sullebarger JT, Basta L, Gursoy S, Lindsay Jr J, Matar F. Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. Am J Cardiol. 1997;80:1352–5.

    Article  CAS  PubMed  Google Scholar 

  21. Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J. 2007;28:705–10.

    Article  PubMed  Google Scholar 

  22. Katranas SA, Kelekis AL, Antoniadis AP, Chatzizisis YS, Giannoglou GD. Association of remodeling with endothelial shear stress, plaque elasticity, and volume in coronary arteries: a pilot coronary computed tomography angiography study. Angiology. 2014;65:413–9.

    Article  PubMed  Google Scholar 

  23. Mondy JS, Lindner V, Miyashiro JK, Berk BC, Dean RH, Geary RL. Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo. Circ Res. 1997;81:320–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling. Mechanisms and clinical implications. Circulation. 2000;102:1186–91.

    Article  CAS  PubMed  Google Scholar 

  25. Sudhir K, Ports TA, Amidon TM, Goldberger JJ, Bhushan V, Kane JP, Yock P, Malloy MJ. Increased prevalence of coronary ectasia in heterozygous familial hypercholesterolemia. Circulation. 1995;91:1375–80.

    Article  CAS  PubMed  Google Scholar 

  26. Antoniadis AP, Chatzizisis YS, Giannoglou GD. Pathogenetic mechanisms of coronary ectasia. Int J Cardiol. 2008;130:335–43.

    Article  PubMed  Google Scholar 

  27. von Birgelen C, Hartmann M, Mintz GS, Baumgart D, Schmermund A, Erbel R. Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (> or =12 months) follow-up intravascular ultrasound. Circulation. 2003;108:2757–62.

    Article  Google Scholar 

  28. Jimenez-Quevedo P, Sabate M, Angiolillo D, Alfonso F, Hernandez-Antolin R, Banuelos C, Bernardo E, Ramirez C, Moreno R, Fernandez C, Escaned J, Macaya C. LDL-cholesterol predicts negative coronary artery remodelling in diabetic patients: an intravascular ultrasound study. Eur Heart J. 2005;26:2307–12.

    Article  CAS  PubMed  Google Scholar 

  29. Yoneyama S, Arakawa K, Yonemura A, Isoda K, Nakamura H, Ohsuzu F. Oxidized low-density lipoprotein and high-density lipoprotein cholesterol modulate coronary arterial remodeling: an intravascular ultrasound study. Clin Cardiol. 2003;26:31–5.

    Article  PubMed  Google Scholar 

  30. Taylor AJ, Burke AP, Farb A, Yousefi P, Malcom GT, Smialek J, Virmani R. Arterial remodeling in the left coronary system: the role of high-density lipoprotein cholesterol. J Am Coll Cardiol. 1999;34:760–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hamasaki S, Higano ST, Suwaidi JA, Nishimura RA, Miyauchi K, Holmes Jr DR, Lerman A. Cholesterol-lowering treatment is associated with improvement in coronary vascular remodeling and endothelial function in patients with normal or mildly diseased coronary arteries. Arterioscler Thromb Vasc Biol. 2000;20:737–43.

    Article  CAS  PubMed  Google Scholar 

  32. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, Wang C, Wolski K, Lin S, Sipahi I, Nicholls SJ, Magyar WA, Loyd A, Churchill T, Crowe T, Nissen SE. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation. 2006;113:2826–34.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, Schoenhagen P, Nissen SE. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 2008;52:255–62.

    Article  CAS  PubMed  Google Scholar 

  34. Schukro C, Syeda B, Yahya N, Gessl A, Holy EW, Pichler P, Derntl M, Glogar D. Volumetric intravascular ultrasound imaging to illustrate the extent of coronary plaque burden in type 2 diabetic patients. J Diabetes Complications. 2007;21:381–6.

    Article  PubMed  Google Scholar 

  35. Kornowski R, Mintz GS, Lansky AJ, Hong MK, Kent KM, Pichard AD, Satler LF, Popma JJ, Bucher TA, Leon MB. Paradoxic decreases in atherosclerotic plaque mass in insulin-treated diabetic patients. Am J Cardiol. 1998;81:1298–304.

    Article  CAS  PubMed  Google Scholar 

  36. Vavuranakis M, Stefanadis C, Toutouzas K, Pitsavos C, Spanos V, Toutouzas P. Impaired compensatory coronary artery enlargement in atherosclerosis contributes to the development of coronary artery stenosis in diabetic patients. An in vivo intravascular ultrasound study. Eur Heart J. 1997;18:1090–4.

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez-Quevedo P, Suzuki N, Corros C, Ferrer C, Angiolillo DJ, Alfonso F, Hernandez-Antolin R, Banuelos C, Escaned J, Fernandez C, Costa M, Macaya C, Bass T, Sabate M. Vessel shrinkage as a sign of atherosclerosis progression in type 2 diabetes: a serial intravascular ultrasound analysis. Diabetes. 2009;58:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura M, Nishikawa H, Mukai S, Setsuda M, Nakajima K, Tamada H, Suzuki H, Ohnishi T, Kakuta Y, Nakano T, Yeung AC. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37:63–9.

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, Aoki J, Valgimigli M, van Mieghem CA, McFadden E, de Jaegere PP, de Feyter P. Coronary artery remodelling is related to plaque composition. Heart. 2006;92:388–91.

    Article  CAS  PubMed  Google Scholar 

  40. Hong MK, Park SW, Lee CW, Choi SW, Song JM, Kang DH, Song JK, Kim JJ, Park SJ. Elevated homocysteine levels might be associated with coronary artery remodeling in patients with stable angina: an intravascular ultrasound study. Clin Cardiol. 2002;25:225–9.

    Article  PubMed  Google Scholar 

  41. Iwata A, Miura S, Mori K, Kawamura A, Nishikawa H, Saku K. Associations between metabolic factors and coronary plaque growth or arterial remodeling as assessed by intravascular ultrasound in patients with stable angina. Hypertens Res. 2008;31:1879–86.

    Article  CAS  PubMed  Google Scholar 

  42. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297–303.

    Article  PubMed  Google Scholar 

  43. Fujii K, Carlier SG, Mintz GS, Wijns W, Colombo A, Bose D, Erbel R, de Ribamar Costa Jr J, Kimura M, Sano K, Costa RA, Lui J, Stone GW, Moses JW, Leon MB. Association of plaque characterization by intravascular ultrasound virtual histology and arterial remodeling. Am J Cardiol. 2005;96:1476–83.

    Article  PubMed  Google Scholar 

  44. Kume T, Okura H, Kawamoto T, Akasaka T, Toyota E, Watanabe N, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Relationship between coronary remodeling and plaque characterization in patients without clinical evidence of coronary artery disease. Atherosclerosis. 2008;197:799–805.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Garcia HM, Goedhart D, Schuurbiers JC, Kukreja N, Tanimoto S, Daemen J, Morel MA, Bressers M, van Es GA, Wentzel JJ, Gijsen F, van der Steen AF, Serruys PW. Virtual histology and remodelling index allow in vivo identification of allegedly high-risk coronary plaques in patients with acute coronary syndromes: a three vessel intravascular ultrasound radiofrequency data analysis. EuroIntervention. 2006;2:338–44.

    PubMed  Google Scholar 

  46. Kim SW, Mintz GS, Ohlmann P, Hassani SE, Michalek A, Escolar E, Bui AB, Pichard AD, Satler LF, Kent KM, Suddath WO, Waksman R, Weissman NJ. Comparative intravascular ultrasound analysis of ostial disease in the left main versus the right coronary artery. J Invasive Cardiol. 2007;19:377–80.

    PubMed  Google Scholar 

  47. Takeuchi H, Morino Y, Matsukage T, Masuda N, Kawamura Y, Kasai S, Hashida T, Fujibayashi D, Tanabe T, Ikari Y. Impact of vascular remodeling on the coronary plaque compositions: an investigation with in vivo tissue characterization using integrated backscatter-intravascular ultrasound. Atherosclerosis. 2009;202:476–82.

    Article  CAS  PubMed  Google Scholar 

  48. Sabate M, Kay IP, de Feyter PJ, van Domburg RT, Deshpande NV, Ligthart JM, Gijzel AL, Wardeh AJ, Boersma E, Serruys PW. Remodeling of atherosclerotic coronary arteries varies in relation to location and composition of plaque. Am J Cardiol. 1999;84:135–40.

    Article  CAS  PubMed  Google Scholar 

  49. Higashikuni Y, Tanabe K, Yamamoto H, Aoki J, Nakazawa G, Onuma Y, Otsuki S, Yagishita A, Yachi S, Nakajima H, Hara K. Relationship between coronary artery remodeling and plaque composition in culprit lesions: an intravascular ultrasound radiofrequency analysis. Circ J. 2007;71:654–60.

    Article  PubMed  Google Scholar 

  50. Costa RA, Feres F, Staico R, Abizaid A, Costa Jr JR, Siqueira D, Tanajura LF, Damiani LP, Sousa A, Sousa JE, Colombo A. Vessel remodeling and plaque distribution in side branch of complex coronary bifurcation lesions: a grayscale intravascular ultrasound study. Int J Cardiovasc Imaging. 2013;29:1657–66.

    Article  PubMed  Google Scholar 

  51. Hong MK, Park SW, Lee CW, Ko JY, Kang DH, Song JK, Kim JJ, Mintz GS, Park SJ. Intravascular ultrasound findings of negative arterial remodeling at sites of focal coronary spasm in patients with vasospastic angina. Am Heart J. 2000;140:395–401.

    Article  CAS  PubMed  Google Scholar 

  52. Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, Rioufol G, Kotys MS, Elagha A, Pettigrew RI. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol. 2008;295:H717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet. 1989;2:941–4.

    Article  CAS  PubMed  Google Scholar 

  54. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes : an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  CAS  PubMed  Google Scholar 

  55. Kaji S, Akasaka T, Hozumi T, Takagi T, Kawamoto T, Ueda Y, Yoshida K. Compensatory enlargement of the coronary artery in acute myocardial infarction. Am J Cardiol. 2000;85:1139–41. A1139.

    Article  CAS  PubMed  Google Scholar 

  56. Kotani J, Mintz GS, Castagna MT, Pinnow E, Berzingi CO, Bui AB, Pichard AD, Satler LF, Suddath WO, Waksman R, Laird Jr JR, Kent KM, Weissman NJ. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation. 2003;107:2889–93.

    Article  PubMed  Google Scholar 

  57. Hong YJ, Jeong MH, Choi YH, Ko JS, Lee MG, Kang WY, Lee SE, Kim SH, Park KH, Sim DS, Yoon NS, Youn HJ, Kim KH, Park HW, Kim JH, Ahn Y, Cho JG, Park JC, Kang JC. Positive remodeling is associated with more plaque vulnerability and higher frequency of plaque prolapse accompanied with post-procedural cardiac enzyme elevation compared with intermediate/negative remodeling in patients with acute myocardial infarction. J Cardiol. 2009;53:278–87.

    Article  PubMed  Google Scholar 

  58. Imazeki T, Sato Y, Inoue F, Anazawa T, Tani S, Matsumoto N, Takayama T, Uchiyama T, Saito S. Evaluation of coronary artery remodeling in patients with acute coronary syndrome and stable angina by multislice computed tomography. Circ J. 2004;68:1045–50.

    Article  PubMed  Google Scholar 

  59. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  60. Smits PC, Pasterkamp G, van Ufford MA Q, Eefting FD, Stella PR, de Jaegere PP, Borst C. Coronary artery disease: arterial remodelling and clinical presentation. Heart. 1999;82:461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hassani SE, Mintz GS, Fong HS, Kim SW, Xue Z, Pichard AD, Satler LF, Kent KM, Suddath WO, Waksman R, Weissman NJ. Negative remodeling and calcified plaque in octogenarians with acute myocardial infarction: an intravascular ultrasound analysis. J Am Coll Cardiol. 2006;47:2413–9.

    Article  PubMed  Google Scholar 

  62. Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisolm GM. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res. 1995;76:996–1002.

    Article  CAS  PubMed  Google Scholar 

  63. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation. 1996;94:35–43.

    Article  CAS  PubMed  Google Scholar 

  64. Sahara M, Kirigaya H, Oikawa Y, Yajima J, Ogasawara K, Satoh H, Nagashima K, Hara H, Nakatsu Y, Aizawa T. Arterial remodeling patterns before intervention predict diffuse in-stent restenosis: an intravascular ultrasound study. J Am Coll Cardiol. 2003;42:1731–8.

    Article  PubMed  Google Scholar 

  65. Finet G, Weissman NJ, Mintz GS, Satler LF, Kent KM, Laird JR, Adelmann GA, Ajani AE, Castagna MT, Rioufol G, Pichard AD. Mechanism of lumen enlargement with direct stenting versus predilatation stenting: influence of remodelling and plaque characteristics assessed by volumetric intracoronary ultrasound. Heart. 2003;89:84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, Satler LF, Kent KM, Stone GW, Leon MB. Atherosclerotic plaque burden and CK-MB enzyme elevation after coronary interventions : intravascular ultrasound study of 2256 patients. Circulation. 2000;101:604–10.

    Article  CAS  PubMed  Google Scholar 

  67. Jang JS, Jin HY, Seo JS, Yang TH, Kim DK, Park YA, Cho KI, Park YH, Kim DS. Meta-analysis of plaque composition by intravascular ultrasound and its relation to distal embolization after percutaneous coronary intervention. Am J Cardiol. 2013;111:968–72.

    Article  PubMed  Google Scholar 

  68. Kang WC, Oh KJ, Han SH, Ahn TH, Chung WJ, Shin MS, Koh KK, Choi IS, Shin EK. Effect of preinterventional arterial remodeling on intimal hyperplasia after implantation of a polymer-based paclitaxel-eluting stent: angiographic and IVUS study. Int J Cardiol. 2007;123:50–4.

    Article  PubMed  Google Scholar 

  69. Hassan AK, Bergheanu SC, Stijnen T, van der Hoeven BL, Snoep JD, Plevier JW, Schalij MJ, Wouter Jukema J. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80.

    Article  CAS  PubMed  Google Scholar 

  70. Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsik L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.

    Article  PubMed  Google Scholar 

  71. Jimenez-Quevedo P, Sabate M, Angiolillo DJ, Costa MA, Alfonso F, Gomez-Hospital JA, Hernandez-Antolin R, Banuelos C, Goicolea J, Fernandez-Aviles F, Bass T, Escaned J, Moreno R, Fernandez C, Macaya C. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients: three-dimensional ultrasound results of the Diabetes and Sirolimus-Eluting Stent (DIABETES) Trial. J Am Coll Cardiol. 2006;47:2172–9.

    Article  CAS  PubMed  Google Scholar 

  72. Radu MD, Raber L, Kalesan B, Muramatsu T, Kelbaek H, Heo J, Jorgensen E, Helqvist S, Farooq V, Brugaletta S, Garcia-Garcia HM, Juni P, Saunamaki K, Windecker S, Serruys PW. Coronary evaginations are associated with positive vessel remodelling and are nearly absent following implantation of newer-generation drug-eluting stents: an optical coherence tomography and intravascular ultrasound study. Eur Heart J. 2014;35:795–807.

    Article  CAS  PubMed  Google Scholar 

  73. Lim TT, Liang DH, Botas J, Schroeder JS, Oesterle SN, Yeung AC. Role of compensatory enlargement and shrinkage in transplant coronary artery disease. Serial intravascular ultrasound study. Circulation. 1997;95:855–9.

    Article  CAS  PubMed  Google Scholar 

  74. Li HY, Tanaka K, Oeser B, Wertman B, Kobashigawa JA, Tobis JM. Compensatory enlargement in transplant coronary artery disease: an intravascular ultrasound study. Chin Med J (Engl). 2006;119:564–9.

    Google Scholar 

  75. Li H, Tanaka K, Oeser B, Kobashigawa JA, Tobis JM. Vascular remodelling after cardiac transplantation: a 3-year serial intravascular ultrasound study. Eur Heart J. 2006;27:1671–7.

    Article  PubMed  Google Scholar 

  76. Li H, Tanaka K, Chhabra A, Oeser B, Kobashigawa JA, Tobis JM. Vascular remodeling 1 year after cardiac transplantation. J Heart Lung Transplant. 2007;26:56–62.

    Article  PubMed  Google Scholar 

  77. Fearon WF, Potena L, Hirohata A, Sakurai R, Yamasaki M, Luikart H, Lee J, Vana ML, Cooke JP, Mocarski ES, Yeung AC, Valantine HA. Changes in coronary arterial dimensions early after cardiac transplantation. Transplantation. 2007;83:700–5.

    Article  PubMed  Google Scholar 

  78. Tsutsui H, Ziada KM, Schoenhagen P, Iyisoy A, Magyar WA, Crowe TD, Klingensmith JD, Vince DG, Rincon G, Hobbs RE, Yamagishi M, Nissen SE, Tuzcu EM. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation. 2001;104:653–7.

    Article  CAS  PubMed  Google Scholar 

  79. Schwarzacher SP, Uren NG, Ward MR, Schwarzkopf A, Giannetti N, Hunt S, Fitzgerald PJ, Oesterle SN, Yeung AC. Determinants of coronary remodeling in transplant coronary disease: a simultaneous intravascular ultrasound and Doppler flow study. Circulation. 2000;101:1384–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Gonzalo, N., Rodriguez, V., Broyd, C.J., Jimenez-Quevedo, P., Escaned, J. (2017). Remodeling of Epicardial Coronary Vessels. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics