Skip to main content

Measurement of Coronary Flow Reserve in the Catheterization Laboratory

  • Chapter
  • First Online:
Physiological Assessment of Coronary Stenoses and the Microcirculation

Abstract

This chapter starts by a brief review of coronary physiology in terms of pressure-flow relationships and effects of vessel distensibility on microvascular resistance to lay the foundation for interpretation of coronary stenosis hemodynamics. The fluid dynamics of stenosis pressure gradient, resistance, and its dependency on flow and stenosis dimensions is outlined in the next section. Special consideration is given to serial lesions, stenosis compliance, and diffuse coronary narrowing. The last section discusses the hemodynamic effect of coronary epicardial stenoses on coronary blood flow and the need for integration of multiple physiological parameters to arrive at a well-founded procedural decision for an individual patient suffering from ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  CAS  PubMed  Google Scholar 

  2. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kern MJ, Bach RG, Mechem CJ, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol. 1996;28:1154–60.

    Article  CAS  PubMed  Google Scholar 

  4. Piek JJ, Boersma E, Di Mario C, et al. Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the results of exercise electrocardiography. Eur Heart J. 2000;21:466–74.

    Article  CAS  PubMed  Google Scholar 

  5. Doucette JW, Corl PD, Payne HM, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85:1899–911.

    Article  CAS  PubMed  Google Scholar 

  6. Pijls NHJ, De Bruyne B, Smith L, et al. Coronary thermodilution to assess flow reserve Validation in humans. Circulation. 2002;105:2482–6.

    Article  PubMed  Google Scholar 

  7. De Bruyne B, Pijls NHJ, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation. 2001;104:2003–6.

    Article  PubMed  Google Scholar 

  8. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van de Hoef TP, van Lavieren MA, Damman P, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7:301–11.

    Article  PubMed  Google Scholar 

  10. van de Hoef TP, Bax M, Meuwissen M, et al. Impact of coronary microvascular function on long-term cardiac mortality in patients with acute ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6:207–15.

    Article  PubMed  Google Scholar 

  11. van de Hoef TP, Bax M, Damman P, et al. Impaired coronary autoregulation is associated with long-term fatal events in patients with stable coronary artery disease. Circ Cardiovasc Interv. 2013;6:329–35.

    Article  PubMed  Google Scholar 

  12. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? J Am Coll Cardiol Img. 2012;5:193–202.

    Article  Google Scholar 

  13. Echavarria-Pinto M, Escaned J, Macias E, et al. Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve: a combined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation. 2013;128:2557–66.

    Article  PubMed  Google Scholar 

  14. Seiler C, Kirkeeide RL, Gould KL. Measurement from arteriograms of regional myocardial bed size distal to any point in the coronary vascular tree for assessing anatomic area at risk. J Am Coll Cardiol. 1993;21:783–97.

    Article  CAS  PubMed  Google Scholar 

  15. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation. 1992;85:1987–2003.

    Article  CAS  PubMed  Google Scholar 

  16. van Lavieren MA, van de Hoef TP, Sjauw KD, et al. How should I treat a patient with refractory angina and a single stenosis with normal FFR but abnormal CFR? EuroIntervention. 2015;11:125–8.

    Article  PubMed  Google Scholar 

  17. Adjedj J, Toth GG, Johnson NP, et al. Intracoronary adenosine: dose–response relationship with hyperemia. J Am Coll Cardiol Intv. 2015;8:1422–30.

    Article  Google Scholar 

  18. Emanuelsson H, Holmberg S, Selin K, Wallin J. Factors that modify the flow response to intracoronary injections. Circulation. 1985;72:287–91.

    Article  CAS  PubMed  Google Scholar 

  19. van’t Veer M, Geven MC, Rutten MC, et al. Continuous infusion thermodilution for assessment of coronary flow: theoretical background and in vitro validation. Med Eng Phys. 2009;31:688–94.

    Article  Google Scholar 

  20. Aarnoudse W, Van’t Veer M, Pijls NH, et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol. 2007;50:2294–304.

    Article  PubMed  Google Scholar 

  21. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82:1595–606.

    Article  CAS  PubMed  Google Scholar 

  22. Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Britten MB, Zeiher AM, Schachinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis. 2004;15:259–64.

    Article  PubMed  Google Scholar 

  24. Meuwissen M, Siebes M, Chamuleau SAJ, et al. Role of fractional and coronary flow reserve in clinical decision making in intermediate coronary lesions. Interv Cardiol. 2009;1:237–55.

    Article  Google Scholar 

  25. van de Hoef TP, Meuwissen M, Escaned J, et al. Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol. 2013;10:439–52.

    Article  PubMed  Google Scholar 

  26. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Murthy VL, Naya M, Foster CR, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffman JI. Problems of coronary flow reserve. Ann Biomed Eng. 2000;28:884–96.

    Article  CAS  PubMed  Google Scholar 

  29. De Bruyne B, Pijls NH, Barbato E, et al. Intracoronary and intravenous adenosine 5'-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.

    Article  PubMed  Google Scholar 

  30. Arumugham P, Figueredo VM, Patel PB, Morris DL. Comparison of intravenous adenosine and intravenous regadenoson for the measurement of pressure-derived coronary fractional flow reserve. EuroIntervention. 2013;8:1166–71.

    Article  PubMed  Google Scholar 

  31. Pijls NH, Aengevaeren WR, Uijen GJ, et al. Concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty result by videodensitometry. Circulation. 1991;83:854–65.

    Article  CAS  PubMed  Google Scholar 

  32. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization. EuroIntervention. 2015;10:1024–94.

    Article  PubMed  Google Scholar 

  33. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  34. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  PubMed  Google Scholar 

  35. De Bruyne B, Fearon WF, Pijls NH, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  Google Scholar 

  36. Smalling RW, Kelley K, Kirkeeide RL, Fisher DJ. Regional myocardial function is not affected by severe coronary depressurization provided coronary blood flow is maintained. J Am Coll Cardiol. 1985;5:948–55.

    Article  CAS  PubMed  Google Scholar 

  37. van de Hoef TP, Siebes M, Spaan JA, Piek JJ. Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J. 2015;36:3312–9a.

    Article  PubMed  Google Scholar 

  38. van de Hoef TP, Nolte F, Rolandi MC, et al. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol. 2012;52:786–93.

    Article  PubMed  Google Scholar 

  39. Lee JM, Jung JH, Hwang D, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67:1158–69.

    Article  PubMed  Google Scholar 

  40. van de Hoef TP, Echavarria-Pinto M, van Lavieren MA, et al. Diagnostic and prognostic implications of coronary flow capacity: a comprehensive cross-modality physiological concept in ischemic heart disease. JACC Cardiovasc Interv. 2015;8:1670–80.

    Article  PubMed  Google Scholar 

  41. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  42. Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. J Am Coll Cardiol Img. 2012;5:430–40.

    Article  Google Scholar 

  43. Meuwissen M, Siebes M, Chamuleau SAJ, et al. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation. 2002;106:441–6.

    Article  PubMed  Google Scholar 

  44. Meuwissen M, Chamuleau SA, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103:184–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tim P. van de Hoef MD or Jan J. Piek MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

van de Hoef, T.P., Piek, J.J. (2017). Measurement of Coronary Flow Reserve in the Catheterization Laboratory. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics