Skip to main content

Physiological Basis for Area and Gradient Assessment: Hemodynamic Principles of Aortic Stenosis

  • Chapter
Aortic Stenosis

Abstract

The clinical syndrome of severe aortic stenosis (AS) is primarily diagnosed by a mean trans-valve pressure gradient (∆Pmean) >40 mmHg, an aortic valve area (AVA) <1 cm2, AVA indexed to BSA <0.6 cm2/m2, and/or a maximum transaortic velocity (AVVel) >4 m/s with or without symptoms. Surgical or transcatheter aortic valve replacement for symptomatic, severe AS results in significant improvement in survival and quality of life across a spectrum of surgical risk profiles. However, invasive treatments for non-severe AS have not demonstrated similar benefits, and may subject patients to unnecessary procedural risk. Therefore, precise quantification of AS severity is of paramount importance. Notwithstanding, it remains unclear whether area and gradient criteria have to present collectively or individually, or whether they must be obtained invasively or by Doppler.

In this chapter, we will review the physiological changes that occur as blood flow approaches the stenotic aortic valve with generation of a transvalvular ∆P, the relationship between AVA and ∆P, the determinants of transvalvular ∆P and AVA, and the role of Doppler and cardiac catheterization in assessing the severity of aortic stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RRA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, Thomas JM. ACC/AHA guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2014. doi:10.1016/j.jacc.2014.02.536.

    Google Scholar 

  2. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines for the management of valvular heart disease. Eur Heart J. 2012;33:2451–96.

    Article  PubMed  Google Scholar 

  3. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607.

    Article  CAS  PubMed  Google Scholar 

  4. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.

    Article  CAS  PubMed  Google Scholar 

  5. Kvidal P, Bergstrom R, Horte LG, Stahle E. Observed and relative survival after aortic valve replacement. J Am Coll Cardiol. 2000;35(3):747–56.

    Article  CAS  PubMed  Google Scholar 

  6. Abbas AE, Franey LM, Goldstein J, Lester S. Aortic valve stenosis: to the gradient and beyond-the mismatch between area and gradient severity. J Interv Cardiol. 2013;26(2):183–94.

    Article  PubMed  Google Scholar 

  7. Hatle L, Brubakk A, Tromsdal A. Noninvasive assessment of pressure drop in mitral stenosis by Doppler ultrasound. Br Heart J. 1978;40:131–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hatle L, Angelsen BA, Tromsdal A. Noninvasive assessment of aortic stenosis by Doppler ultrasound. Br Heart J. 1980;43:284–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Adams JC, Jiamsripong P, Belohlavek M, McMahon EM, Marupakula V, Heys J, Chaliki HP. Potential role of Reynolds number in resolving Doppler- and catheter- based transvalvular gradient discrepancies in aortic stenosis. J Heart Valve Dis. 2011;20:159–64.

    PubMed  Google Scholar 

  10. Garcia D, Pibarot P, Dumesnil JG, Sakr F, Durand LG. Assessment of aortic valve stenosis severity: a new index based on the energy loss concept. Circulation. 2000;101(7):765–71.

    Article  CAS  PubMed  Google Scholar 

  11. Levine RA, Schwammenthal E. Stenosis is in the eye of the observer: impact of pressure recovery on assessing aortic valve area. J Am Coll Cardiol. 2003;41(3):443–5.

    Article  PubMed  Google Scholar 

  12. Schobel WA, Voelker W, Haase KK, Karsch KR. Extent, determinants and clinical importance of pressure recovery in patients with aortic valve stenosis. Eur Heart J. 1999;20(18):1355–63.

    Article  CAS  PubMed  Google Scholar 

  13. Bach D. Echo/Doppler evaluation of hemodynamics after aortic valve replacement: principles of interrogation and evaluation of high gradients. J Am Coll Cardiol Img. 2010;3:296–304.

    Article  Google Scholar 

  14. Bahlmann E, Cramariuc D, Gerdts E, et al. Impact of pressure recovery on echocardiographic assessment of asymptomatic aortic stenosis. A SEAS substudy. JACC Cardiovasc Imaging. 2010;3:555–62.

    Article  PubMed  Google Scholar 

  15. Saikrishnan N, Kumar G, Sawaya FJ, Lerakis S, Yoganathan AP. Accurate assessment of aortic stenosis: a review of diagnostic moalities and hemodynamics. Circulation. 2014;129:244–53.

    Article  PubMed  Google Scholar 

  16. Ennezat PV, Marechaux S, Pibarot P. From excessive high-flow, high-gradient to paradoxical low-flow, low-gradient aortic valve stenosis: hemodialysis arteriovenous fistula model. Cardiology. 2010;116(1):70–2.

    Article  PubMed  Google Scholar 

  17. Michelena HI, Margaryan E, Miller FA, Eleid M, Maalouf J, Suri R, Messika-Zeitoun D, Pellikka PA, Enriquez-Sarano M. Inconsistent, echocardiographic grading of aortic stenosis: is the left ventricular outflow tract important? Heart. 2013;99(13):921–31.

    Google Scholar 

  18. Donal E, Novaro GM, Deserrano D, Popovic ZB, Greenberg NL, Richards KE, Thomas JD, Garcia MJ. Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis. J Am Soc Echocardiogr. 2005;18(12):1392–8.

    Article  PubMed  Google Scholar 

  19. Richards KE, Deserranno D, Donal E, Greenberg NL, Thomas JD, Garcia MJ. Influence of structural geometry on the severity of bicuspid aortic stenosis. Am J Physiol Heart Circ Physiol. 2004;287(3):H1410–6.

    Google Scholar 

  20. Little SH, Chan KL, Burwash IG. Impact of blood pressure on the Doppler echocardiographic assessment of severity of aortic stenosis. Heart. 2007;93:848–55.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Change SA, Kim HK, Sohn DW. Impact of afterload on the assessment of severity of aortic stenosis. J Cardiovasc Ultrasound. 2012;20(2):79–84.

    Article  Google Scholar 

  22. Hachicha Z, Dumesnil JG, Bogarty P, et al. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation. 2007;115:2856–64.

    Article  PubMed  Google Scholar 

  23. Burwash IG. Low-flow, low-gradient aortic stenosis: from evaluation to treatment. Curr Opin Cardiol. 2007;22:84–91.

    Article  PubMed  Google Scholar 

  24. Pibarot P, Dumesnil JG, Clavel MA. Paradoxical low flow, low gradient aortic stenosis despite preserved ejection fraction. ACVD. 2008;101:595–6.

    Google Scholar 

  25. Keshavarz-Motamed Z, Garcia J, Gaillard E, Capoulade R, Le Ven F, et al. Non-invasive determination of left ventricular workload in patients with aortic stenosis using magnetic resonance imaging and Doppler echocardiography. PLoS ONE. 2014;9(1):e86793. doi:10.1371/journal.pone.0086793.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dumesnil JG, Pibarot P, Carabello B. Paradoxical low flow and/or low gradient severe aortic stenosis despite preserved left ventricular ejection fraction: implications for diagnosis and treatment. Eur Heart J. 2010;31:281–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. VanAuker MD, Chandra M, Shirani J, Strom JA. Jet eccentricity: a misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis. J Am Soc Echocardiogr. 2001;14(9):853–62.

    Article  CAS  PubMed  Google Scholar 

  28. Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1–23.

    Article  PubMed  Google Scholar 

  29. Carabello BA. Advances in the hemodynamic assessment of stenotic cardiac valves. J Am Coll Cardiol. 1987;10:912–9.

    Article  CAS  PubMed  Google Scholar 

  30. Daneshvar SA, Rahimtoola SH. Valve prosthesis-patient mismatch. A long term perspective. J Am Coll Cardiol Img. 2012;60:1123–35.

    Article  Google Scholar 

  31. Pibarot P, Dumesnil JG. Valve prosthesis–patient mismatch, 1978 to 2011. From original concept to compelling evidence. J Am Coll Cardiol Img. 2012;60:1136–9.

    Article  Google Scholar 

  32. Burwash JG, Thomas DD, Sadahiro M, Pearlman AS, Verrier ED, Thomas R, Kraft CD, Otto CM. Dependence of Gorlin formula and continuity equation valve areas on transvalvular volume flow rate in valvular aortic stenosis. Circulation. 1994;89:827–35.

    Article  CAS  PubMed  Google Scholar 

  33. Skjaerpe T, Hegrenaes L, Hatle L. Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation. 1986;72:810–8.

    Article  Google Scholar 

  34. Carabello BA, Grossman W. Grossman’s cardiac catheteization, angiography, and intervention. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  35. Dumesnil JG, Yoanathan AP. Theoretical and practical differences between te Gorlin equation and the continuity equation for calculating aortic and mitral valve areas. Am J Cardiol. 1991;67:1268–72.

    Article  CAS  PubMed  Google Scholar 

  36. Gorlin R, Gorlin SG. Hydraulic formula for calculation of the area of the stenotic mitral valve. other cardiac valves, and central circulatory shunts. Am Heart J. 1951;41:1–29.

    Article  CAS  PubMed  Google Scholar 

  37. Gorlin R. Calculations of cardiac valve stenosis: restoring an old concept for advanced applications. J Am Coll Cardiol. 1987;10(4):920–2.

    Article  CAS  PubMed  Google Scholar 

  38. Segal J, Lerner D, Miller DC, Mitchell RS, Alderman EA. When should Doppler-determined valve area be better than the Gorlin formula? variation in hydraulic constants in low flow states. JACC. 1987;9(6):1294–305.

    Article  CAS  PubMed  Google Scholar 

  39. Canon SR, Richards KL, Crawford M. Hydraulic estimation of stenotic orifice area: a correction of the Gorlin equation. Circulation. 1985;71:110–78.

    Article  Google Scholar 

  40. Hakki AH, Iskandrian AS, Bemis CE, Kimbiris D, Mintz GS, Segal BL, Brice C. A simplified valve formula for the calculation of stenotic cardiac valve areas. Circulation. 1981;63:1050–5.

    Article  CAS  PubMed  Google Scholar 

  41. Oh JK, Taliercio CP, Holmes Jr DR, et al. Prediction of the severity of aortic stenosis by Doppler aortic valve area determination: prospective Doppler-catheterization correlation in 100 patients. J Am Coll Cardiol. 1988;11:1227–34.

    Article  CAS  PubMed  Google Scholar 

  42. Bahlmann E, Gerdts E, Cramariuc D, Gohlke-Baerwolf C, Nienaber CA, Wachtell K, Seifert R, Chambers JB, Kuck KH, Ray S. Prognostic value of energy loss index in asymptomatic aortic stenosis. Circulation. 2013;127:1149–56.

    Article  PubMed  Google Scholar 

  43. Mascherbauer J, Schima H, Rosenhek R, et al. Value and limitations of aortic valve resistance with particular consideration of low flow – low gradient aortic stenosis: an in vitro study. Eur Heart J. 2004;25:787–93.

    Article  PubMed  Google Scholar 

  44. Clavel MA, Ennezat PV, Maréchaux S M.D†., Dumesnil JG M.D*., Capoulade R M.S., Zeineb Hachicha Z, Mathieu P, Annaïk Bellouin A, Bergeron S, Meimoun P, Arsenault M, Le Tourneau T, Pasquet A, Couture C M.D., Pibarot P. Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF. J Am Coll Cardiol Imaging. 2013;6:175–83.

    Article  Google Scholar 

  45. Blais C, Burwash IG, Mundigler G, et al. Projected valve area at normal flow rate improves the assessment of stenosis severity in patients with low-flow, low-gradient aortic stenosis. Circulation. 2006;113:711–21.

    Article  PubMed  Google Scholar 

  46. Cueff C, Serfaty JM, Cimadevilla C, Laissy JP, Himbert D, Tubach F, Duval X, Iung B, Enriquez-Sarano M, Vahanian A, Messika-Zeitoun D. Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart. 2011;97(9):721–6.

    Article  PubMed  Google Scholar 

  47. Lindman BR. Left ventricular mechanics in aortic stenosis: fancy tool or clinically useful. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr (Impact Factor: 298) 08/2014. 2014;27(8):826–8. doi:10.1016/j.echo.2014.06.003.

    Article  Google Scholar 

  48. Tandon A, Grayburn PA. Imaging of low-gradient severe aortic stenosis. JACC Cardiovasc Imaging. 2013;6(2):184–95.

    Article  PubMed  Google Scholar 

  49. Garcia D, Dumesnil JG, Durand LG, et al. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J Am Coll Cardiol. 2003;41(3):435–42.

    Article  PubMed  Google Scholar 

  50. Pibarot P, Garcia D, Dumesnil JG. Energy loss index in aortic stenosis: from fluid mechanic concept to clinical application. Circulation. 2013;127(10):1101–4.

    Article  PubMed  Google Scholar 

  51. Galli E, Guirette Y, Feneon D, Daudin M, Fournet M, Leguerrier A, Flecher E, Mabo P, Donal E. Prevalence and prognostic value of right ventricular dysfunction in severe aortic stenosis. Eur Heart J Cardiovasc Imaging. 2015;16(5):531–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr E. Abbas MD,FACC,FSCAI,FSVM,FASE,RPVI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Abbas, A.E., Pibarot, P. (2015). Physiological Basis for Area and Gradient Assessment: Hemodynamic Principles of Aortic Stenosis. In: Abbas, A. (eds) Aortic Stenosis. Springer, London. https://doi.org/10.1007/978-1-4471-5242-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5242-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5241-5

  • Online ISBN: 978-1-4471-5242-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics