Skip to main content

Coronary Flow Resistance and Reserve

  • Chapter
Interventional Cardiology Imaging

Abstract

The coronary arteries are the initial vessels off of the aorta and eventually end in a rich capillary bed that provides blood to the myocytes in a one to one fashion (one capillary for each myocyte.) The myocardial oxygen concentration is at maximum such that any increase in myocardial blood flow (MBF) can only be accomplished by increase in coronary blood flow (CBF). As previously mentioned, the CBF is governed by local and systemic factors that help regulate the high demands of the myocardium. The final common pathway is the microvasculature that vasodilates or vasoconstricts to adjust for changes in blood flow.

At resting condition, the CBF is known as the basal flow and resting CBF under normal hemodynamic conditions averages 0.7–1.0 ml/min/g. Regional CBF remains constant as coronary artery perfusion pressure is reduced below aortic pressure over a wide range when the determinants of myocardial oxygen consumption are kept constant, this is known as autoregulation. Earlier studies suggest the lower limit of autoregulation is 70 mmHg, however, canine studies suggest autoregulation may ensue up to as low as a mean of 40 mmHg of coronary pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canty JM. Coronary blood flow and myocardial ischemia. In: Brawnwald’s heart disease. 9th ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  2. Camici PG M.D., Crea F M.D. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  CAS  PubMed  Google Scholar 

  3. Samady H. Application of intracoronary physiology: use of pressure and flow measurements. In: CathSap 4. ACC. Washington DC: American College of Cardiology; 2014.

    Google Scholar 

  4. Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation. 1997;95:522–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87–94.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significant of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation. 1987;75:723–32.

    Article  CAS  PubMed  Google Scholar 

  7. McGinn AL, Wilson RF, Olivari MT, Homans DC, White CW. Coronary vasodilator reserve after human orthotopic cardiac transplantation. Circulation. 1988;78:1200–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lipscomb K, Gould KL. Mechanism of the effect of coronary artery stenosis on coronary flow in the dog. Am Heart J. 1975;89:60–7.

    Article  CAS  PubMed  Google Scholar 

  9. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–74.

    Article  CAS  PubMed  Google Scholar 

  10. Gould KL, Kelley KO. Physiological significance of coronary flow velocity and changing stenosis geometry during coronary vasodilation in awake dogs. Circ Res. 1982;50:695–704.

    Article  CAS  PubMed  Google Scholar 

  11. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary angiogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–24.

    Article  CAS  PubMed  Google Scholar 

  12. Marzilli M, Merz CNB, Boden W, et al. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link. J Am Coll Cardiol. 2012;60:951–6.

    Article  PubMed  Google Scholar 

  13. MacCarthy P, Berger A, Manoharan G, Bartunek J, Barbato E, Wijns W, Heyndrickx GR, Pijls NH, De Bruyne B. Pressure-derived measurement of coronary flow reserve. J Am Coll Cardiol. 2005;45:216–20.

    Article  PubMed  Google Scholar 

  14. Zhang ZD, Svendsen M, Choy JS, Sinha AK, Huo Y, Yoshida K, Molloi S, Kassab GS. New method to measure coronary velocity and coronary flow reserve. Am J Physiol Heart Circ Physiol. 2011;301(1):H21–8.

    Article  CAS  PubMed  Google Scholar 

  15. Akasaka T, Yamamuro A, Kamiyama N, Koyama Y, Akiyama M, Watanabe N, Neishi Y, Takagi T, Shalman E, Barak C, Yoshida K. Assessment of coronary flow reserve by coronary pressure measurement: comparison with flow- or velocity-derived coronary flow reserve. J Am Coll Cardiol. 2003;41(9):1554–60.

    Article  PubMed  Google Scholar 

  16. Pijls NH, De Bruyne B, Smith L, Aarnoudse W, Barbato E, Bartunek J, Bech GJ, Van De Vosse F. Coronary thermodilution to assess flow reserve: validation in humans. Circulation. 2002;105(21):2482–6.

    Article  PubMed  Google Scholar 

  17. De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation. 2001;104(17):2003–6.

    Article  PubMed  Google Scholar 

  18. Safian R, Freed M. The manual of interventional cardiology. Royal Oak: Physicians’ Press; 2001.

    Google Scholar 

  19. El-Ahdab F, Ragosta M. Invasive assessment of coronary flow reserve. J Nucl Cardiol. 2008;15(2):276–81.

    Article  PubMed  Google Scholar 

  20. Ofili EO M.D., M.P.Ha., Kern MJ M.D., F.A.C.Ca., Labovitz AJ M.D., F.A.C.Ca., St. Vrain JA R.D.M.Sa., Segal J M.D., F.A.C.Cb., Aguirre FV M.D., F.A.C.Ca., Castello R M.Da. Analysis of coronary blood flow velocity dynamics in angiographicaily normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol. 1993;21(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  21. Brush JE, Cannon RO, Schenke WH, et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319:1302–7.

    Article  PubMed  Google Scholar 

  22. Houghton JL, Frank MJ, Carr AA, Dohlen TW, Prisant M. Relations among impaired coronary flow reserve, left ventricular hypertrophy, and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. JACC. 1990;15(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  23. Strauer BE, Motz W, Vogt M, Schwartzkopff B. Evidence for reduced coronary flow reserve in patients with insulin-dependent diabetes. A possible cause for diabetic heart disease in man. Exp Clin Endocrinol Diabetes. 1997;105:15–20.

    Article  CAS  PubMed  Google Scholar 

  24. Meyer C, Schwaiger M. Myocardial blood flow and glucose metabolism in diabetes mellitus. Am J Cardiol. 1997;80:94A–101.

    Article  CAS  PubMed  Google Scholar 

  25. Klein LW M.D., Pichard AD M.D., F.A.C.C., Holt J M.A., Smith H Ph.D., Gorlin R M.D., F.A.C.C., Teichholz LE M.D., F.A.C.C. Effects of chronic tobacco smoking on the coronary circulation. J Am Coll Cardiol. 1983;1(2s1):421–6.

    Article  CAS  PubMed  Google Scholar 

  26. Otsuka R, Watanabe H, Hirata K, Tokai K, Muro T, Yoshiyama M, Takeuchi K, Yoshikawa J. Acute effects of passive smoking on the coronary circulation in healthy young adults. JAMA. 2001;286(4):436–41.

    Article  CAS  PubMed  Google Scholar 

  27. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000;102:1233–8.

    Article  CAS  PubMed  Google Scholar 

  28. Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet. 1993;341:1496–500.

    Article  CAS  PubMed  Google Scholar 

  29. Treasure CB M.D., Klein JL M.D., Weintraub WS M.D., Talley JD M.D., Stillabower ME M.D., Kosinski AS Ph.D., Zhang J M.S., Boccuzzi SJ Ph.D., Cedarholm JC M.D., Alexander RW M.D., Ph.D. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995;332:481–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wolford TL, Donohue TJ, Bach RG, et al. Heterogeneity of coronary flow reserve in the examination of multiple individual allograft coronary arteries. Circulation. 1999;99:626–32.

    Article  CAS  PubMed  Google Scholar 

  31. Nitenberg A, Tavolaro O, Loisance D, Foult J, Hittinger L, Aptecar E, Cachera J. Maximal coronary vasodilator capacity of orthotopic heart transplants in patients with and without rejection. Am J Cardiol. 1989;64:513–8.

    Article  CAS  PubMed  Google Scholar 

  32. Nakhleh RE, Jones J, Goswitz JJ, Anderson EA, Titus J. Correlation of endomyocardial biopsy findings with autopsy findings in human cardiac allografts. J Heart Lung Transplant. 1992;11:479–85.

    CAS  PubMed  Google Scholar 

  33. Fearson W, Hirohata A, Nakamura M, Luikart H, Lee D, Vagelos R, Hunt S, Valantine H, Fitzgerald P, Yock P, Yeung A. Discordant changes in epicardial and microvascular coronary physiology after cardiac transplantation: physiologic investigation for transplant arteriopathy II (PITA II) study. J Heart Lung Transplant. 2006;25(7):765–71.

    Article  Google Scholar 

  34. Kern MJ M.D., F.A.C.C.A., Dupouy P M.D.B., Drury JH M.D.A., Aguirre FV M.D., F.A.C.C.A., Aptecar E M.D.B., Bach RG M.D., F.A.C.C.A., Caracciolo EA M.D., F.A.C.C.A., Donohue TJ M.D., F.A.C.C.A., Rande J-LD M.D.B., Geschwind HJ M.D.B., Mechem CJ R.N.A., Kane G M.D.B., Teiger E M.D.B., Wolford TL M.D.A. Role of coronary artery lumen enlargement in improving coronary blood flow after balloon angioplasty and stenting: a combined intravascular ultrasound Doppler flow and imaging study. J Am Coll Cardiol. 1997;29(7):1520–7.

    Article  CAS  PubMed  Google Scholar 

  35. Van Herck PL, Paelinck BP, Haine SE, Claeys MJ, Miljoen H, Bosmans JM, Parizel PM, Vrints CJ. Impaired coronary flow reserve after a recent myocardial infarction: correlation with infarct size and extent of microvascular obstruction. Int J Cardiol. 2013;167(2):351–6.

    Article  PubMed  Google Scholar 

  36. Pijls NHJ, Fearon WF, Tonino PAL, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  PubMed  Google Scholar 

  37. De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  PubMed  Google Scholar 

  38. Fearon WF, Nakamura M, Lee DP, Rezaee M, Vagelos RH, Hunt SA, Fitzgerald PJ, Yock PG, Yeung AC. Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic Investigation for Transplant Arteriopathy (PITA Study). Circulation. 2003;108(13):1605–10.

    Article  PubMed  Google Scholar 

  39. Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, Bax M, de Jong A, Spaan JA, Piek JJ. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103(2):184–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr E. Abbas MD,FACC,FSCAI,FSVM,FASE,RPVI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Smith, J.L., Pica, M.C., Abbas, A.E. (2015). Coronary Flow Resistance and Reserve. In: Abbas, A. (eds) Interventional Cardiology Imaging. Springer, London. https://doi.org/10.1007/978-1-4471-5239-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5239-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5238-5

  • Online ISBN: 978-1-4471-5239-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics