Skip to main content

Intracoronary Imaging for PCI Planning and Stent Optimization

  • Chapter
Interventional Cardiology Imaging
  • 1739 Accesses

Abstract

The currently available intracoronary imaging techniques in the US, including intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near-infrared spectroscopy (NIRS), play an important role in percutaneous coronary interventions (PCI). The applications of intracoronary imaging in PCI include its use for PCI planning, in which imaging is performed prior to PCI, and its use for stent optimization, in which imaging is performed after PCI. With respect to PCI planning, intracoronary imaging is useful in assessing lesions of intermediate stenosis severity, in sizing the target vessel for stent selection, and in providing risk assessment for peri-procedural myocardial infarction and angiographic no-reflow prior to PCI. With respect to stent optimization, the utilization of intracoronary imaging to assess the adequacy of the PCI result has been associated with improved clinical outcomes. Given the current litigious medical environment and the advent of public reporting of outcomes, the use of intracoronary imaging for PCI optimization is likely to gain increasing importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonino PAL, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study. J Am Coll Cardiol. 2010;55:2816–21.

    Article  PubMed  Google Scholar 

  2. Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  3. Pijls NHJ, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis. J Am Coll Cardiol. 2007;49:2105–11.

    Article  PubMed  Google Scholar 

  4. De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  PubMed  Google Scholar 

  5. Mintz GS, Nissen SE, Anderson WD, et al. ACC clinical expert consensus document on standards for the acquisition, measurement and reporting of intravascular ultrasound studies: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  6. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;59:1058–72.

    Article  PubMed  Google Scholar 

  7. Von Birgelen C, de Vrey EA, Mintz GS, et al. ECG-gated three-dimensional intravascular ultrasound. Feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation. 1997;96:2944–52.

    Article  Google Scholar 

  8. Fedele S, Biondi-Zoccai G, Kwiatkowski P, Di Vito L, Occhipinti M, Cremonesi A, Albertucci M, Materia L, Paoletti G, Prati F. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans. Am J Cardiol. 2012;110:1106–12.

    Article  PubMed  Google Scholar 

  9. Capodanno D, Prati F, Pawlowsky T, et al. Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. EuroIntervention. 2009;5:538–43.

    Article  PubMed  Google Scholar 

  10. Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment. J Am Coll Cardiol Img. 2013;6:1105–7.

    Article  Google Scholar 

  11. Waksman R, Legutko J, Singh J, et al. FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol. 2013;61:917–23.

    Article  PubMed  Google Scholar 

  12. Gonzalo N, Escaned J, Alfonso F, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography. J Am Coll Cardiol. 2012;59:1080–9.

    Article  PubMed  Google Scholar 

  13. Briguori C, Anzuini A, Airoldi F, et al. Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol. 2001;87:136–41.

    Article  CAS  PubMed  Google Scholar 

  14. Koo BK, Yang H, Doh J, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4:803–11.

    Article  PubMed  Google Scholar 

  15. Abizaid AS, Mintz GS, Mehran R, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular findings: importance of lumen dimensions. Circulation. 1999;100:256–61.

    Article  CAS  PubMed  Google Scholar 

  16. Nam C, Yoon H, Cho Y, et al. Outcomes of percutaneous coronary intervention in intermediate coronary artery disease. J Am Coll Cardiol Intv. 2010;3:812–7.

    Article  Google Scholar 

  17. McDaniel MC, Eshtehardi P, Sawaya FJ, Douglas JS, Samady H. Contemporary clinical applications of coronary intravascular ultrasound. J Am Coll Cardiol Intv. 2011;4:1155–67.

    Article  Google Scholar 

  18. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110:2831–6.

    Article  PubMed  Google Scholar 

  19. Kang SJ, Lee JY, Ahn JM, et al. Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. J Am Coll Cardiol Intv. 2011;4:1168–74.

    Article  Google Scholar 

  20. Fassa A, Wagatsuma K, Higano ST, et al. Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease. J Am Coll Cardiol. 2005;45:204–11.

    Article  PubMed  Google Scholar 

  21. De la Torre Hernandez JM, Hernandez Hernandez F, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions: results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58:351–8.

    Article  PubMed  Google Scholar 

  22. Puri R, Kapadia SR, Nicholls SJ, Harvey JE, Kataoka Y, Tuzcu EM. Optimizing outcomes during left main percutaneous coronary intervention with intravascular ultrasound and fractional flow reserve. J Am Coll Cardiol Intv. 2012;5:697–707.

    Article  Google Scholar 

  23. Shiono Y, Kitabata H, Kubo T, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76:2218–25.

    Article  PubMed  Google Scholar 

  24. Prasad A, Herrmann J. Myocardial infarction due to percutaneous coronary intervention. N Engl J Med. 2011;364:453–64.

    Article  CAS  PubMed  Google Scholar 

  25. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36:1202–9.

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein JA, Grines C, Fischell T, et al. Coronary embolization following balloon dilation of lipid-core plaques. JACC Cardiovasc Imaging. 2009;2:1420–4.

    Article  PubMed  Google Scholar 

  27. Lansky AJ, Stone GW. Periprocedural myocardial infarction: prevalence, prognosis, and prevention. Circ Cardiovasc Interv. 2010;3:602–10.

    Article  PubMed  Google Scholar 

  28. Park DW, Kim YH, Yun SC, et al. Frequency, causes, predictors, and clinical significance of peri-procedural myocardial infarction following percutaneous coronary intervention. Eur Heart J. 2013;34:1662–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ndrepepa G, Tiroch K, Fusaro M, et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol. 2010;55:2383–9.

    Article  PubMed  Google Scholar 

  30. Madder RD, Busman M, Banga S. Plaque characterization to identify patients at high risk of acute complications during PCI. Interv Cardiol. 2013;5:663–72.

    Article  Google Scholar 

  31. Kimura S, Kakuta T, Yonetsu T, et al. Clinical significance of echo signal attenuation on intravascular ultrasound in patients with coronary artery disease. Circ Cardiovasc Interv. 2009;2:444–54.

    Article  PubMed  Google Scholar 

  32. Lee T, Kakuta T, Yonetsu T, et al. Assessment of echo-attenuated plaque by optical coherence tomography and its impact on post-procedural creatinine kinase-myocardial band elevation in elective stent implantation. JACC Cardiovasc Interv. 2011;4:483–91.

    Article  PubMed  Google Scholar 

  33. Shiono Y, Kubo T, Tanaka A, et al. Impact of attenuated plaque as detected by intravascular ultrasound on the occurrence of microvascular obstruction after percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2013;6:847–53.

    Article  Google Scholar 

  34. Wu X, Mintz GS, Xu K, et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction. J Am Coll Cardiol Intv. 2011;4:495–502.

    Article  Google Scholar 

  35. Hong YJ, Jeong MH, Choi YH, et al. Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis. Eur Heart J. 2011;32:2059–66.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Higashikuni Y, Tanabe K, Tanimoto S, et al. Impact of culprit plaque composition on the no-reflow phenomenon in patients with acute coronary syndrome: an intravascular ultrasound radiofrequency analysis. Circ J. 2008;72:1235–41.

    Article  PubMed  Google Scholar 

  37. Hong YJ, Mintz GS, Kim SW, et al. Impact of plaque composition on cardiac troponin elevation after percutaneous coronary intervention: an ultrasound analysis. J Am Coll Cardiol Img. 2009;2:458–68.

    Article  Google Scholar 

  38. Bose D, von Birgelen C, Zhou XY, et al. Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res Cardiol. 2008;103:587–97.

    Article  PubMed  Google Scholar 

  39. Kawamoto T, Okura H, Koyama Y, et al. The relationship between coronary plaque characteristics and small embolic particles during coronary stent implantation. J Am Coll Cardiol. 2007;50:1635–40.

    Article  PubMed  Google Scholar 

  40. Porto I, di Vito L, Burzotta F, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5:89–96.

    Article  CAS  PubMed  Google Scholar 

  41. Lee T, Tonetsu T, Koura K, et al. Impact of plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv. 2011;4:378–86.

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka A, Imanishi T, Kitabata H, et al. Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J. 2009;30:1348–55.

    Article  PubMed  Google Scholar 

  43. Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. J Am Coll Cardiol Img. 2008;1:638–48.

    Article  Google Scholar 

  44. Waxman S, Dixon SR, L’Allier P, et al. In vivo validation of a catheter based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. J Am Coll Cardiol Img. 2009;2:858–68.

    Article  Google Scholar 

  45. Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of peri-procedural myocardial infarction. Circ Cardiovasc Interv. 2011;4:429–37.

    Article  PubMed  Google Scholar 

  46. Stone GW, Webb J, Cox DA, et al. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction. JAMA. 2005;293:1063–72.

    Article  CAS  PubMed  Google Scholar 

  47. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124:e574–651.

    Article  PubMed  Google Scholar 

  48. Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.

    Article  PubMed  Google Scholar 

  49. Moussa I, DiMario C, Reimers B, Akiyama T, Tobis J, Colombo A, et al. Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome. J Am Coll Cardiol. 1997;29:6–12.

    Article  CAS  PubMed  Google Scholar 

  50. de Jaegere P, Mudra H, Figulla H, et al. Intravascular ultrasound-guided optimized stent deployment: immediate and 6 months clinical and angiographic results from the multicenter ultrasound stenting in coronaries study (MUSIC Study). Eur Heart J. 1998;19:1214–23.

    Article  PubMed  Google Scholar 

  51. Hassan AKM, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80.

    Article  CAS  PubMed  Google Scholar 

  52. Parise H, Maehara A, Stone GW, Leon BM, Mintz GS. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug eluting stent era. Am J Cardiol. 2011;107:374–82.

    Article  PubMed  Google Scholar 

  53. Bezerra HG, Attizzani GF, Sirbu V, et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. J Am Coll Cardiol Intv. 2013;6:228–36.

    Article  Google Scholar 

  54. Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics: current status, limitations, and potential. J Am Coll Cardiol Intv. 2011;4:1257–70.

    Article  Google Scholar 

  55. Chamié D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphologic characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. J Am Coll Cardiol Intv. 2013;6:800–13.

    Article  Google Scholar 

  56. Farb A, Sangiorgi G, Carter A, et al. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99:44–52.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kim SW, Mintz GS, Ohlmann P, et al. Frequency and severity of plaque prolapse within Cypher and Taxus stents as determined by sequential intravascular ultrasound analysis. Am J Cardiol. 2006;98:1206–11.

    Article  PubMed  Google Scholar 

  59. Hong MK, Park SW, Lee CW, et al. Long-term outcomes of minor plaque prolapse within stents documented with intravascular ultrasound. Catheter Cardiovasc Interv. 2000;51:22–6.

    Article  CAS  PubMed  Google Scholar 

  60. Roy P, Steinberg DH, Sushinsky SJ, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J. 2008;29:1851–7.

    Article  CAS  PubMed  Google Scholar 

  61. Witzenbichler B, Maehara A, Weisz G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the ADAPT-DES study. Circulation. 2014;129(4):463–70. Published online ahead of print 2013.

    Article  CAS  PubMed  Google Scholar 

  62. Park SJ, Kim YH, Park DW, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Madder MD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Madder, R.D. (2015). Intracoronary Imaging for PCI Planning and Stent Optimization. In: Abbas, A. (eds) Interventional Cardiology Imaging. Springer, London. https://doi.org/10.1007/978-1-4471-5239-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5239-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5238-5

  • Online ISBN: 978-1-4471-5239-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics