Privacy Leakage in Binary Biometric Systems: From Gaussian to Binary Data

  • Tanya Ignatenko
  • Frans M. J. Willems


In this chapter we investigate biometric key-binding systems for i.i.d. Gaussian biometric sources. In these systems two terminals observe two correlated biometric sequences. Moreover, a secret key, which is independent of the biometric sequences, is selected at the first terminal. The first terminal binds this secret key to the observed biometric sequence and communicates it to the second terminal by sending a public message. This message should only contain a negligible amount of information about the secret key. Here, in addition, we require it to leak as little as possible about the biometric data. For this setting the fundamental trade-off between secret-key rate and privacy-leakage rate is determined. Moreover, we investigate the effect of binary quantization on the system performance. We further discuss the popular fuzzy commitment scheme. It is shown that from the perspective of privacy leakage, there are better options for fuzzy commitment than its typical implementation based on BCH codes.


LDPC Code Convolutional Code Biometric Data Biometric System Soft Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahlswede R, Csiszár I (1993) Common randomness in information theory and cryptography—part I: secret sharing. IEEE Transactions on Information Theory 39:1121–1132 MATHCrossRefGoogle Scholar
  2. 2.
    Ahlswede R, Csiszár I (1998) Common randomness in information theory and cryptography—part II: CR capacity. IEEE Transactions on Information Theory 44:225–240 MATHCrossRefGoogle Scholar
  3. 3.
    Assche GV, Cardinal J, Cerf N (2004) Reconciliation of a quantum-distributed Gaussian key. IEEE Transactions on Information Theory 50(2):394–400 CrossRefGoogle Scholar
  4. 4.
    Bergmans P (1974) A simple converse for broadcast channels with additive white Gaussian noise (corresp). IEEE Transactions on Information Theory 20(2):279–280 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen C, Veldhuis R, Kevenaar T, Akkermans A (2008) Multi-bits biometric string generation based on the likelihood ratio. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshop on Biometrics, Anchorage, Alaska, US, 24–28 June 2008, vol 24, pp 1–7 Google Scholar
  6. 6.
    Cover TM, Thomas JA (1991) Elements of Information Theory. Wiley, New York MATHCrossRefGoogle Scholar
  7. 7.
    Csiszár I, Narayan P (2000) Common randomness and secret key generation with a helper. IEEE Transactions on Information Theory 46(2):344–366 MATHCrossRefGoogle Scholar
  8. 8.
    Daugman J (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11):1148–1161 CrossRefGoogle Scholar
  9. 9.
    Ignatenko T, Willems F (2008) Privacy leakage in biometric secrecy systems. In: Proc of Forty-Sixth Annual Allerton Conf on Communication, Control, and Computing, Monticello, IL, USA, 23–26 September 2008, pp 850–857 Google Scholar
  10. 10.
    Jain AK, Nandakumar K, Nagar A (2008) Biometric template security. EURASIP Journal on Advances in Signal Processing Google Scholar
  11. 11.
    Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In: 6th ACM Conf on Computer and Communications Security, pp 28–36 Google Scholar
  12. 12.
    Kelkboom E, Molina GG, Kevenaar T, Veldhuis R, Jonker W (2008) Binary biomterics: an analytic framework to estimate the bit error probability under Gaussian assumption. In: 2nd IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), Sep–Oct 2008, pp 1–6 CrossRefGoogle Scholar
  13. 13.
    Kevenaar TAM, Schrijen GJ, van der Veen M, Akkermans AHM, Zuo F (2005) Face recognition with renewable and privacy preserving binary templates. In: AutoID, pp 21–26 Google Scholar
  14. 14.
    Lai L, Ho S-W, Poor HV (2008) Privacy-security tradeoffs in biometric security systems. In: Proc of 46th Ann Allerton Conf on Comm, Control, and Computing, Monticello, IL, USA, 23–26 Sept 2008, pp 23–26 Google Scholar
  15. 15.
    Li Q, Sutcu Y, Memon N (2006) Secure sketch for biometric templates. In: Asiacrypt, Shanghai, China, Dec 2006. LNCS, vol 4284. Google Scholar
  16. 16.
    Maurer U (1993) Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory 39:733–742 MATHCrossRefGoogle Scholar
  17. 17.
    Proakis J (2001) Digital Communications, 4th edn. McGraw–Hill, New York Google Scholar
  18. 18.
    Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27:623–656 MathSciNetGoogle Scholar
  19. 19.
    Smith A (2004) Maintaining secrecy when information leakage is unavoidable. PhD dissertation, MIT Google Scholar
  20. 20.
    Sutcu Y, Rane S, Yedidia J, Draper S, Vetro A (2008) Feature extraction for a Slepian-Wolf biometric system using ldpc codes. In: IEEE Int Symp Inf Theory (ISIT), Toronto, Canada, 6–11 July 2008, pp 2297–2301 Google Scholar
  21. 21.
    Ignatenko T, Willems F (2010) Information leakage in fuzzy commitment schemes. IEEE Transactions on Information Forensics and Security 5(2):337–348 CrossRefGoogle Scholar
  22. 22.
    Tuyls P, Akkermans A, Kevenaar T, Schrijen G-J, Bazen AM, Veldhuis R (2005) Practical biometric authentication with template protection. In: 5th Int Conf on Audio- and Video-Based Personal Authentication (AVBPA), pp 436–446 CrossRefGoogle Scholar
  23. 23.
    Venkatesan S, Anantharam V (1998) The common randomness capacity of a pair of independent discrete memoryless channels. IEEE Transactions on Information Theory 44:215–224 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Verdu S, Guo D (2006) A simple proof of the entropy power inequality. IEEE Transactions on Information Theory 52(5):2165–2166 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13:260–269 MATHCrossRefGoogle Scholar
  26. 26.
    Willems F (1989) Coding theorem for the awgn channel in terms of jointly typical sequences. In: 10th Symp Inf Theory in the Benelux, Houthalen, Belgium, 25 & 26 May 1989, pp 13–18 Google Scholar
  27. 27.
    Yang S, Verbauwhede I (2007) Secure iris verification. In: IEEE Int Conf on Acoustics, Speech and Signal Processing (ICASSP), vol 2, pp 133–136 Google Scholar
  28. 28.
    Ye C, Reznik A, Shah Y (2006) Extracting secrecy from Gaussian random variables. In: IEEE Int Symp Inf Theory (ISIT), Seattle, USA, 9–14 July 2006, pp 2593–2597 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations