Skip to main content

Sympathetic Renal Denervation Using the EnligHTN Multi-electrode Ablation System: The St Jude Experience

  • Chapter
  • First Online:
Renal Denervation

Abstract

A reciprocal relationship between the brain and the kidneys has been long recognized. Efferent sympathetic nerves, originating from the brain, arrive to the kidneys and result in increased renin production, sodium and water reabsorption, and decreased renal blood flow. Afferent sympathetic nerves from the kidneys stimulate sympathetic centers in the central nervous system. Sympathetic overactivity plays a significant role in hypertension and several other disease conditions, such as chronic kidney disease, congestive heart failure, obstructive sleep apnea, polycystic ovary syndrome, and sympathetically driven tachyarrhythmias. Both efferent and afferent sympathetic fibers course within the renal vascular wall rendering transvascular disruption of sympathetic nerves feasible. Radiofrequency ablation is an established technique, used for several years in the management of atrial fibrillation, and has been found effective for renal nerve ablation. Accumulating data indicates that renal nerve ablation is effective and safe in resistant hypertension, while pilot data point towards beneficial effects of renal nerve ablation in conditions characterized by sympathetic overactivity. Many devices have been developed for renal nerve ablation, mainly using radiofrequency as the energy source, and six of them have been already approved in Europe. This chapter will present the experience with the St Jude device, will critically address the advantages and disadvantages of renal nerve ablation, and will provide future perspectives of this innovative interventional technique for the management of resistant hypertension and other conditions with sympathetic overdrive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmer K. Soul made flesh. London: The RandomHouse (Arrow Books); 2004. p. 188–207.

    Google Scholar 

  2. Barajas L, Latta H. A three-dimensional study of the juxtaglomerular apparatus in the rat. Light and electron microscopic observations. Lab Invest. 1963;12:257–69.

    CAS  PubMed  Google Scholar 

  3. Barajas L. The innervation of the juxtaglomerular apparatus. An electron microscopic study of the innervation of the glomerular arterioles. Lab Invest. 1964;13:916–29.

    CAS  PubMed  Google Scholar 

  4. Barajas L. Renin secretion: an anatomical basis for tubular control. Science. 1971;172:485–7.

    Article  CAS  PubMed  Google Scholar 

  5. Barajas L, Liu L, Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol. 1992;70:735–49.

    Article  CAS  PubMed  Google Scholar 

  6. Hamilton WF, Richards DW. Output of the heart. In: Fishman AP, Richards DW, editors. Circulation of the blood. Men and ideas. Bethesda: American Physiological Society; 1982. p. 87–90.

    Google Scholar 

  7. Bernard C. Lecons sur les proprietes physiologiques et les alterations pathologiques des liquids de l’ organisme, vol. 2. Paris: Bailliere; 1859. p. 170–91.

    Book  Google Scholar 

  8. von Euler US. A specific sympathetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta Physiol Scand. 1946;12:73–97.

    Article  Google Scholar 

  9. Harrington M, Kincaid-Smith P, McMichael J. Results of treatment in malignant hypertension: a seven-year experience in 94 cases. Br Med J. 1959;2:969–89.

    Article  Google Scholar 

  10. Bradford JR. The innervation of the renal blood vessels. J Physiol. 1889;10:358–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    CAS  PubMed  Google Scholar 

  12. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:S99–105.

    Article  Google Scholar 

  13. Campese V, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  CAS  PubMed  Google Scholar 

  14. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.

    CAS  PubMed  Google Scholar 

  15. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R245–53.

    Article  CAS  PubMed  Google Scholar 

  16. Campese VM, Ku E, Park J. Sympathetic renal innervation and resistant hypertension. Int J Hypertens. 2011;2011:814354.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tsioufis C, Kordalis A, Flessas D, et al. Pathophysiology of resistant hypertension: the role of sympathetic nervous system. Int J Hypertens. 2011;2011:642416.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation in hypertension. Curr Opin Nephrol Hypertens. 2011;20:|647–53.

    Article  PubMed  Google Scholar 

  19. Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc. 2009;84:822–30.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Esler M. Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108:227–37.

    Article  CAS  PubMed  Google Scholar 

  21. Adson AW, McCraig W, Brown GE. Surgery in its relation to hypertension. Surg Gynecol Obstet. 1936;62:314–31.

    Google Scholar 

  22. Papin E, Ambard L. Resection of the nerves of the kidney for nephralgia and small hydronephroses. J Urol. 1924;11:337–49.

    Google Scholar 

  23. Page IH, Heuer GJ. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest. 1935;XIV:27–30.

    Article  Google Scholar 

  24. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension. JAMA. 1953;152:1501–4.

    Article  CAS  Google Scholar 

  25. Peet MM, Woods WW, Braden S. The surgical treatment of hypertension. JAMA. 1940;115:1875–85.

    Article  Google Scholar 

  26. Allen EV. Sympathectomy for essential hypertension. Circulation. 1952;6:131–40.

    Article  CAS  PubMed  Google Scholar 

  27. Freyberg RH, Peet MM. The effect on the kidney of bilateral splanchnicectomy in patients with hypertension. J Clin Invest. 1937;16:49–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Isberg EM, Peet MM. The influence of supradiaphragmatic splanchnicectomy on the heart in hypertension. Am Heart J. 1948;35:567–83.

    Article  CAS  PubMed  Google Scholar 

  29. Peet MM. Hypertension and its surgical treatment by supradiaphragmatic splanchnicectomy. Am J Surg. 1948;LXXV:48–68.

    Article  Google Scholar 

  30. Freis ED, Wanko A, Wilson IM, Parrish AE. Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. J Am Med Assoc. 1958;166:137–40.

    Article  CAS  PubMed  Google Scholar 

  31. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation and treatment. Hypertension. 2008;117:510–26.

    Google Scholar 

  32. Mancia G, Laurent S, Agabiti-Rossei E, et al. 2009 Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens. 2009;27:2121–58.

    Article  CAS  PubMed  Google Scholar 

  33. Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension. 2011;57:1076–80.

    Article  CAS  PubMed  Google Scholar 

  34. de la Sierra A, Segura J, Banegas JR, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57:898–902.

    Article  PubMed  Google Scholar 

  35. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human post-mortem histologic study. Clin Anat. 2012;25:628–33.

    Article  PubMed  Google Scholar 

  36. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, Hata C, Papalois A, Stefanadis C. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012. 10.038. [Epub ahead of print].

    Google Scholar 

  37. Worthley SG, Tsioufis C, Worthley M, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Papademetriou V. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013. doi:10.1093/eurheartj/eht197.

    PubMed Central  PubMed  Google Scholar 

  38. Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, Furuta Y, Aizawa Y, Iwafuchi M. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.

    Article  CAS  PubMed  Google Scholar 

  39. Vonend O, Antoch G, Rump LC, Blondin D. Secondary rise in blood pressure after renal denervation. Lancet. 2012;380:778.

    Article  PubMed  Google Scholar 

  40. Kaltenbach B, Id D, Franke JC, Sievert H, Hennersdorf M, Maier J, Bertog SC. Renal artery stenosis after renal sympathetic denervation. J Am Coll Cardiol. 2012;60:2694–5.

    Article  PubMed  Google Scholar 

  41. Petidis K, Anyfanti P, Doumas M. Renal sympathetic denervation: renal function concerns. Hypertension. 2011;58:e19.

    Article  CAS  PubMed  Google Scholar 

  42. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  43. Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  44. Mahfoud F, Cremens B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24.

    Article  CAS  PubMed  Google Scholar 

  45. Hering D, Esler MD, Schlaich MP. Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation. EuroIntervention. 2013;9:R127–35.

    Article  PubMed  Google Scholar 

  46. Dorr O, Liebetrau C, Mollmann H, et al. Renal sympathetic denervation does not aggravate functional or structural renal damage. J Am Coll Cardiol. 2013;61:479–80.

    Article  PubMed  Google Scholar 

  47. Schneider S, Baumann M, Lefeldt S, Laugwitz KL, Heemann U. Renal failure after renal sympathetic ablation in a patient with chronic kidney disease – which came first, the chicken or the egg? Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.04.123.

    Google Scholar 

  48. Brinkmann J, Heusser K, Schmidt, Menne J, Klein G, Bauersachs J, Haller H, Sweep FC, Diedrich A, Jordan J, Tank J. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60:1485–90.

    Article  CAS  PubMed  Google Scholar 

  49. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Sclaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  50. Mancia G, Parati G. Office compared with ambulatory blood pressure in assessing response to antihypertensive treatment: a meta-analysis. J Hypertens. 2004;22:435–45.

    Article  CAS  PubMed  Google Scholar 

  51. Ishikawa J, Carroll DJ, Kuruvilla S, Schwartz JE, Pickering TG. Changes in home versus clinic blood pressure with antihypertensive treatments: a meta-analysis. Hypertension. 2008;52:856–64.

    Article  CAS  PubMed  Google Scholar 

  52. Mahfoud F, Ukena C, Schmieder R, Cremers B, Rump L, Vonend O, Weil J, Schmidt M, Hoppe UC, Zeller T, Bauer A, Ott C, Blessing E, Sobotka PA, Krum H, Schlaich M, Esler M, Böhm M. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension: clinical perspective. Circulation. 2013;128:132–40.

    Article  CAS  PubMed  Google Scholar 

  53. Doumas M, Anyfanti P, Bakris G. Should ambulatory blood pressure monitoring be mandatory for future studies in resistant hypertension: a perspective. J Hypertens. 2012;30:874–6.

    Article  CAS  PubMed  Google Scholar 

  54. Krum H, Schlaich MP, Bohm M, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the symplicity HTN-1 study. Lancet. 2013. doi:10.1016/S0140-6736(13)62192-3. [Epub ahead of print].

    PubMed  Google Scholar 

  55. Papademetriou V, Doumas M, Anyfanti P, Faselis C, Kokkinos P, Tsioufis K. Renal nerve ablation for hypertensive patients with chronic kidney disease. Curr Vasc Pharmacol. 2014;12(1):47–54 [Epub ahead of print].

    Google Scholar 

  56. Converse Jr RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.

    Article  PubMed  Google Scholar 

  57. Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.

    Article  PubMed  Google Scholar 

  58. Hering D, Mahmoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Böhm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23:1250–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Böhm M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Eikelis N, Straznicky N, Lambert GW, Esler MD. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.01.218. [Epub ahead of print].

    Google Scholar 

  60. Doumas M, Faselis C, Tsioufis C, Papademetriou V. Carotid baroreceptor activation for the treatment of resistant hypertension and heart failure. Curr Hypertens Rep. 2012;14:238–46.

    Article  CAS  PubMed  Google Scholar 

  61. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, Francis DP. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162:189–92.

    Article  PubMed  Google Scholar 

  62. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  63. Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010;174:156–61.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Franquini JV, Medeiros AR, Andrade TU, Araújo MT, Moysés MR, Abreu GR, Vasquez EC, Bissoli NS. Influence of renal denervation on blood pressure, sodium and water excretion in acute total obstructive apnea in rats. Braz J Med Biol Res. 2009;42:214–9.

    Article  CAS  PubMed  Google Scholar 

  65. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Böhm M. Renal sympathetic denervation suppresses post-apneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.

    Article  CAS  PubMed  Google Scholar 

  66. Witkowski A, Prejbisz A, Florczak E, Kądziela J, Śliwiński P, Bieleń P, Michałowska I, Kabat M, Warchoł E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58:559–65.

    Article  CAS  PubMed  Google Scholar 

  67. Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, Lambert E, Chopra R, Socratous F, Hennebry S, Eikelis N, Böhm M, Krum H, Lambert G, Esler MD, Sobotka PA. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011;29:991–6.

    Article  CAS  PubMed  Google Scholar 

  68. Sverrisdóttir YB, Mogren T, Kataoka J, Janson PO, Stener-Victorin E. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am J Physiol Endocrinol Metab. 2008;294:E576–81.

    Article  PubMed  Google Scholar 

  69. Linz D, Wirth K, Ukena C, et al. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm. 2013;10:1525–30.

    Article  PubMed  Google Scholar 

  70. Zhao Q, Yu S, Zou M, Dai Z, Wang X, Xiao J, Huang C. Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing. J Interv Card Electrophysiol. 2012;35:119–25.

    Article  PubMed  Google Scholar 

  71. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Böhm M. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101:63–7.

    Article  PubMed  Google Scholar 

  72. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios Papademetriou MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Tsioufis, C., Doumas, M., Faselis, C., Papademetriou, V. (2015). Sympathetic Renal Denervation Using the EnligHTN Multi-electrode Ablation System: The St Jude Experience. In: Heuser, R., Schlaich, M., Sievert, H. (eds) Renal Denervation. Springer, London. https://doi.org/10.1007/978-1-4471-5223-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5223-1_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5222-4

  • Online ISBN: 978-1-4471-5223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics