Advertisement

Optical Coherence Tomography for Assessment of Percutaneous Coronary Intervention with Excimer Laser Coronary Atherectomy

  • John Rawlins
  • Suneel Talwar
  • Peter O’KaneEmail author

Abstract

The indications for Excimer laser coronary atherectomy (ELCA) have been refined in modern interventional practice. With the expanding role for optical coherence tomography (OCT) providing high-resolution intra-coronary imaging, this article examines the appearance of the coronary lumen after ELCA. Each indication for ELCA is discussed and illustrated with a clinical case, followed by detailed analysis of the OCT imaging pre and post ELCA. The aim of the article is to provide information to interventional cardiologists to facilitate decision making during PCI, when ELCA has been used as part of the interventional strategy.

Keywords

Excimer Laser Atherectomy Thrombosis PPCI SVG 

References

  1. 1.
    O’Kane P, Redwood S. Laser for PCI. In: Oxford textbook of interventional cardiology. London: Oxford University Press; 2010.Google Scholar
  2. 2.
    Litvack F, Eigler N, Margolis J, et al. Percutaneous excimer laser coronary angioplasty: results in the first consecutive 3,000 patients. The ELCA Investigators. J Am Coll Cardiol. 1994;23:323–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Fernandez JP. Treatment of calcific coronary stenosis with the use of excimer laser coronary atherectomy and rotational atherectomy. Interv Cardiol. 2010;2:801–6.CrossRefGoogle Scholar
  4. 4.
    Badr S, Ben-Dor I, Dvir D, et al. The state of the excimer laser for coronary intervention in the drug-eluting stent era. Cardiovasc Revasc Med. 2013;14:93–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandez JP, Hobson AR, McKenzie D, et al. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and non-expansible coronary lesions. EuroIntervention. 2013;9:243–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Huang D. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1:752–61.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Takarada S, Imanishi T, Liu Y, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31:401–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Prati F, Guagliumi G, Mintz GS, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Imola F, Mallus MT, Ramazzotti V, et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Gonzalo N, Serruys PW, García-García HM, et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries. Rev Esp Cardiol. 2009;62:615–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Barlis P, Serruys PW, Gonzalo N, van der Giessen WJ, de Jaegere PJ, Regar E. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol. 2008;102:391–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Barlis P, Serruys PW, Devries A, Regar E. Optical coherence tomography assessment of vulnerable plaque rupture: predilection for the plaque ‘shoulder’. Eur Heart J. 2008;29:2023.CrossRefPubMedGoogle Scholar
  19. 19.
    Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Prati F, Capodanno D, Pawlowski T, et al. Local delivery versus intracoronary infusion of abciximab in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2010;3:928–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Bezerra HG, Attizzani GF, Sirbu V, et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary. JACC Cardiovasc Interv. 2013;6:228–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawamori H, Shite J, Shinke T, et al. Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging. 2013;14:865–75.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Serruys PW, Onuma Y, Ormiston JA, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122:2301–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Gonzalo N, Serruys PW, Piazza N, Regar E. Optical coherence tomography (OCT) in secondary revascularisation: stent and graft assessment. EuroIntervention. 2009;5(Suppl D):D93–100.PubMedGoogle Scholar
  26. 26.
    Goto K, Takebayashi H, Kihara Y, et al. Appearance of neointima according to stent type and restenotic phase: analysis by optical coherence tomography. EuroIntervention. 2013;9:601–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Park S-J, Kang S-J, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56:1897–907.CrossRefPubMedGoogle Scholar
  30. 30.
    Mehran R, Mintz GS, Satler LF, et al. Treatment of in-stent restenosis with excimer laser coronary angioplasty: mechanisms and results compared with PTCA alone. Circulation. 1997;96:2183–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Papaioannou T, Yadegar D, Vari S, Shehada R, Grundfest WS. Excimer laser (308 nm) recanalisation of in-stent restenosis: thermal considerations. Lasers Med Sci. 2001;16:90–100.CrossRefPubMedGoogle Scholar
  32. 32.
    Burris N, Lippincott RA, Elfe A, Tcheng JE, O’Shea JC, Reiser C. Effects of 308 nanometer excimer laser energy on 316 L stainless-steel stents: implications for laser atherectomy of in-stent restenosis. J Invasive Cardiol. 2000;12:555–9.PubMedGoogle Scholar
  33. 33.
    Webb JG, Carere RG, Virmani R, et al. Retrieval and analysis of particulate debris after saphenous vein graft intervention. J Am Coll Cardiol. 1999;34:468–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation. 2002;105:1285–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Bittl JA, Sanborn TA, Yardley DE, et al. Predictors of outcome of percutaneous excimer laser coronary angioplasty of saphenous vein bypass graft lesions. The percutaneous excimer laser coronary angioplasty registry. Am J Cardiol. 1994;74:144–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Giugliano GR, Falcone MW, Mego D, et al. A prospective multicenter registry of laser therapy for degenerated saphenous vein graft stenosis: the COronary graft Results following Atherectomy with Laser (CORAL) trial. Cardiovasc Revasc Med. 2012;13:84–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Ebersole D, Dahm JB, Das T, et al. Excimer laser revascularization of saphenous vein grafts in acute myocardial infarction. J Invasive Cardiol. 2004;16:177–80.PubMedGoogle Scholar
  38. 38.
    Topaz O. Plaque removal and thrombus dissolution with the photoacoustic energy of pulsed-wave lasers-biotissue interactions and their clinical manifestations. Cardiology. 1996;87:384–91.CrossRefPubMedGoogle Scholar
  39. 39.
    Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.CrossRefPubMedGoogle Scholar
  40. 40.
    Vlaar PJ, Svilaas T, van der Horst IC, et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet. 2008;371:1915–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Fröbert O, Lagerqvist B, Olivecrona GK, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Stone GW, Abizaid A, Silber S, et al. Prospective, randomized, multicenter evaluation of a polyethylene terephthalate micronet mesh-covered stent (MGuard) in ST-segment elevation myocardial infarction: the MASTER trial. J Am Coll Cardiol. 2012;60(19):1975–84.Google Scholar
  43. 43.
    Costa JR, Abizaid A, Dudek D, Silber S, Leon MB, Stone GW. Rationale and design of the MGuard for acute ST elevation reperfusion MASTER trial. Catheter Cardiovasc Interv. 2013;82:184–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Topaz O, Das T, Dahm J, Madyhoon H, Perin E, Ebersole D. Excimer laser revascularisation: current indications, applications and techniques. Lasers Med Sci. 2001;16:72–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Topaz O, Minisi AJ, Bernardo NL, et al. Alterations of platelet aggregation kinetics with ultraviolet laser emission: the “stunned platelet” phenomenon. Thromb Haemost. 2001;86:1087–93.PubMedGoogle Scholar
  46. 46.
    Lee G, Ikeda RM, Stobbe D, et al. Effects of laser irradiation on human thrombus: demonstration of a linear dissolution-dose relation between clot length and energy density. Am J Cardiol. 1983;52:876–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Topaz O, Shah R, Mohanty PK, McQueen RA, Janin Y, Bernardo NL. Application of excimer laser angioplasty in acute myocardial infarction. Lasers Surg Med. 2001;29:185–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Topaz O, Ebersole D, Das T, et al. Excimer laser angioplasty in acute myocardial infarction (the CARMEL multicenter trial). Am J Cardiol. 2004;93:694–701.CrossRefPubMedGoogle Scholar
  49. 49.
    Ambrosini V, Cioppa A, Salemme L, et al. Excimer laser in acute myocardial infarction: single centre experience on 66 patients. Int J Cardiol. 2008;127:98–102.CrossRefPubMedGoogle Scholar
  50. 50.
    Sunew J, Chandwaney RH, Stein DW, Meyers S, Davidson CJ. Excimer laser facilitated percutaneous coronary intervention of a nondilatable coronary stent. Catheter Cardiovasc Interv. 2001;53:513–7; discussion 518.CrossRefPubMedGoogle Scholar
  51. 51.
    Lam SC, Bertog S, Sievert H. Excimer laser in management of underexpansion of a newly deployed coronary stent. Catheter Cardiovasc Interv. 2014;83(1):E64–8.Google Scholar
  52. 52.
    Latib A, Takagi K, Chizzola G, et al. Excimer laser {LEsion} modification to expand non-dilatable sTents: the {ELLEMENT} Registry. Cardiovasc Revasc Med. 2014;15(1):8–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Dorset Heart Centre, Royal Bournemouth HospitalBournemouthUK

Personalised recommendations