Laser Catheter Ablation of Cardiac Arrhythmias: Experimental and Basic Research and Clinical Results

  • Robert SplinterEmail author


The treatment of cardiac arrhythmias remains a challenge to improvement the general and specific quality of life parameters for people suffering from ventricular and atrial drug-resistant irregular heart-rates. The treatment options for cardiac arrhythmias have experienced many changes over the past decades. Both the mechanism-of-action has undergone changes as has the focus of the clinical targets. The use of laser light has been verified to provide opportunities to change the electrophysiological communication pathway and the inherent contractile sequence as well as contraction mechanical behavior. Both ventricular and atrial tissue can be modified by photocoagulation, rendering the coagulated tissue as an insulator, hence redirecting the depolarization wavefront. The deliberate modification of the depolarization pathway has been proven effective in providing palliation and cure for various arrhythmogenic disorders. The use of short-wavelength near infrared light appears to offer the best solutions for deep coagulation of diseased tissue while preserving the functionality of surrounding healthy cardiac muscle. In ventricular treatments of arrhythmias the success rate has been shown to exceed 65 % and for atrial arrhythmias success of 90 % or better has been established.


Drug-resistant irregular heart rate Laser light Electrophysiological communication Contractile sequence Photocoagulation Depolarization 



In acknowledgment for the clinical work, scientific contributions and practical conversations the following people require honorable mention: Dr. Robert H. Svenson, Dr. Laszlo Littmann, Dr. J Selle, Dr. John J. Gallagher, Gregory Brucker, PhD, Kathleen Tuntelder-Seifert, Jan Tuntelder, Kathy R. Dezern, Katie Linder, Ernest Pruitt, Dr. Andre d’Avila, Dr. Eduardo Sosa, and Sergei Y Semenov, PhD.


  1. 1.
    Kalman JM, Olgin JE, Karch MR, Hamdan M, Lee RJ, Lesh MD. “Cristal tachycardias”: origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography. J Am Coll Cardiol. 1998;31(2):451–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Wyndham CRC. Atrial fibrillation: the most common arrhythmia. Tex Heart Inst J. 2000;27(3):257–67.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Chagas C. Mem Inst Oswaldo Cruz. 1909;1:159–218.CrossRefGoogle Scholar
  4. 4.
    Sosa E, Scanavacca M, d’Avila A, Piccioni J, Sanchez O, Velarde JL, Silva M. Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J Cardiovasc Electrophysiol. 1998;9:229–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Bella PD, Hindricks G, Jais P, Josephson ME, Kautzner J, Kay GN, Kuck KH, Lerman BB, Marchlinski F, Reddy V, Schalij MJ, Schilling R, Soejima K, Wilber D, European Heart Rhythm A, European Society of C, Heart Rhythm S. EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Europace. 2009;11:771–817.CrossRefPubMedGoogle Scholar
  6. 6.
    Brugada P, de Swart H, Bar WHM, J. Smeets LRM, van Ommen FV, Wellens HJJ. Transcoronary chemical ablation of ventricular tachycardia. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Amsterdam, The Netherlands: Elsevier; 1990. pp. 1006–14.Google Scholar
  7. 7.
    Goodacre S, Irons R. ABC of clinical electrocardiography: atrial arrhythmias. BMJ. 2002;324(7337):594–7.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Friedman PL. Catheter cryoablation of cardiac arrhythmias. Curr Opin Cardiol. 2005;20(1):48–54.PubMedGoogle Scholar
  9. 9.
    Huang SKS, Wood MA. Catheter ablation of cardiac arrhythmias. 2nd ed. Philadelphia: Elsevier Saunders; 2011.Google Scholar
  10. 10.
    Keane D. New catheter ablation techniques for the treatment of cardiac arrhythmias. Card Electrophysiol Rev. 2002;6:341–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu Q, Zhou Q, Zhu Q, Rong S, Wang Q, Guo R, Deng C, Liu D, Yang G, Jiang Y, Wang Z, Lei H, He TC, Wang Z, Huang J. Noninvasive cardiac arrhythmia therapy using High-Intensity Focused Ultrasound (HIFU) ablation. Int J Cardiol. 2013;166(2):e28–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Vincent GM, Fox J, Benedick BA, Hunter J, Dixon JA. Laser catheter ablation of simulated ventricular tachycardia. Lasers Surg Med. 1987;7(5):421–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Vincent GM, Fox J, Knowlton K, Dixon JA. Catheter-directed neodymium:YAG laser injury of the left ventricle for arrhythmia ablation: dosimetry and hemodynamic, hematologic, and electrophysiologic effects. Lasers Surg Med. 1989;9(5):446–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Dickfeld T, Tian J, Ahmad G, Jimenez A, Turgeman A, Kuk R, Peters M, Saliaris A, Saba M, Shorofsky S, Jeudy J. MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol. 2011;4(2):172–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Prystowsky EN, Padanilam BJ, Joshi S, Fogel RI. Ventricular arrhythmias in the absence of structural heart disease. J Am Coll Cardiol. 2012;59(20):1733–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Cox JL, Boineau JP, Schuessler RB, Kater KM, Lappas DG. Five-year experience with the maze procedure for atrial fibrillation. Ann Thorac Surg. 1993;56(4):814–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Littmann L, Svenson RH, Tomcsanyi I, Hehrlein C, Gallagher JJ, Bharati S, Lev M, Splinter R, Tatsis GP, Tuntelder JR. Modification of atrioventricular node transmission properties by intraoperative neodymium-YAG laser photocoagulation in dogs. J Am Coll Cardiol. 1991;17(3):797–804.CrossRefPubMedGoogle Scholar
  18. 18.
    Littmann L, Svenson RH, Gallagher JJ, Bharati S, Lev M, Linder KD, Tatsis GP, Nichelson C. Modification of sinus node function by epicardial laser irradiation in dogs. Circulation. 1990;81(1):350–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Svenson RH, Splinter R, Littmann L, Tatsis GP. Photoablation of ventricular arrhythmias: past results and future applications to ventricular and other arrhythmias. Chapter 25. In: Liem LB, Downar E, editors. Progress in catheter ablation: clinical application of new mapping and ablation technology: developments in cardiovascular medicine, vol. 241. New York: Springer; 2001.Google Scholar
  20. 20.
    Dukkipati SR, Neuzil P, Skoda J, Petru J, d’Avila A, Doshi SK, Reddy VY. Visual balloon-guided point-by-point ablation: reliable, reproducible, and persistent pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2010;3(3):266–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Cobb FR, Blumenschein SD, Sealy WC, Boineau JP, Wagner GS, Wallace AG. Successful surgical interruption of the bundle of Kent in a patient with Wolff-Parkinson-White syndrome. Circulation. 1968;38:1018–29.CrossRefPubMedGoogle Scholar
  22. 22.
    Avitall B, Khan M, Krum D, Hare J, Lessila C, Dhala A, Deshpande S, Jazayeri M, Sra J, Akhtar M. Physics and engineering of transcatheter cardiac tissue ablation. J Am Coll Cardiol. 1993;22(3):921–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Avitall B, Lafontaine D, Rozmus G, Adoni N, Dehnee A, Urbonas A, Le KM, Aleksonis D. Ablation of atrial-ventricular junction tissues via the coronary sinus using cryo balloon technology. J Interv Card Electrophysiol. 2005;12(3):203–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Takemoto M, Yoshimura H, Ohba Y, Matsumoto Y, Yamamoto U, Mohri M, Yamamoto H, Origuchi H. Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J Am Coll Cardiol. 2005;45(8):1259–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Wissner E, Stevenson WG, Kuck K-H. Catheter ablation of ventricular tachycardia and non-ischaemic cardiomyopathy; where are we today? A clinical review. Eur Heart J. 2012;33(12):1440–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Feld GK, Fleck RP, Fujimura O, Prothro DL, Bahnson TD, Ibarra M. Control of rapid ventricular response by radiofrequency catheter modification of the atrioventricular node in patients with medically refractory atrial fibrillation. Circulation. 1994;90(5):2299–307.CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu LF, Jaïs P, Keane D, Wharton JM, Deisenhofer I, Hocini M, Shah DC, Sanders P, Scavée C, Weerasooriya R, Clémenty J, Haïssaguerre M. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 2004;109(7):828–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Weber HP, Heinze A, Hauptmann G, Ruprecht L, Unsöld E. In vivo temperature measurement during transcatheter endomyocardial Nd-YAG laser irradiation in dogs. Lasers Med Sci. 1997;12(4):352–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Splinter R, Hooper B. Introduction to biomedical optics. Boca Raton: CRC Press/Taylor & Francis; 2007.Google Scholar
  30. 30.
    Tipler P, Mosca G. Physics for scientists and engineers: electricity, magnetism, light, and elementary modern physics. 5th ed. New York: W. H. Freeman/Macmillan; 2004.Google Scholar
  31. 31.
    Mielnik B. An electron trapped in a rotating magnetic field. J Math Phys. 1989;30(2):537–49.CrossRefGoogle Scholar
  32. 32.
    Whittaker ET. A history of the theories of aether and electricity. New York: Dover Publications; 1951.Google Scholar
  33. 33.
    Splinter R. Handbook of physics in medicine and biology. Boca Raton: CRC Press/Taylor & Francis Group; 2010.CrossRefGoogle Scholar
  34. 34.
    Parshina EY, Yusipovich AL, Platonova AA, Grygorczyk R, Maksimov GV, Orlov SN. Thermal inactivation of volume-sensitive K+, Cl cotransport and plasma membrane relief changes in human erythrocytes. Pflugers Arch Eur J Physiol. 2013;465(7):977–83.CrossRefGoogle Scholar
  35. 35.
    Boltzmann L. Wiener Berichte. 1866;53:195–220.Google Scholar
  36. 36.
    Tornberg E. Effects of heat on meat proteins – implications on structure and quality of meat products. Meat Sci. 2005;70(3):493–508. doi: 10.1016/j.meatsci.2004.11.021.CrossRefPubMedGoogle Scholar
  37. 37.
    Jin B, Li L, Liu G-Q, Li B, Zhu Y-K, Liao L-N. Structural changes of malt proteins during boiling. Molecules. 2009;14(3):1081–97. doi: 10.3390/molecules14031081A.CrossRefPubMedGoogle Scholar
  38. 38.
    Jacques SL. Ratio of entropy to enthalpy in thermal transitions in biological tissues. J Biomed Opt. 2006;11(4):041108.CrossRefPubMedGoogle Scholar
  39. 39.
    Floume T, Syms RR, Darzi AW, Hanna GB. Optical, thermal, and electrical monitoring of radio-frequency tissue modification. J Biomed Opt. 2010;15(1):018003. doi: 10.1117/1.3323089.CrossRefPubMedGoogle Scholar
  40. 40.
    Keane D, Ruskin JN. Linear atrial ablation with a diode laser and fiberoptic catheter. Circulation. 1999;100(14):e59–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Saksena S. Catheter ablation of tachycardias with laser energy: issues and answers. PACE. 1989;12:196–203.CrossRefPubMedGoogle Scholar
  42. 42.
    Splinter R, Semenov SY, Nanney GA, Littmann L, Tuntelder JR, Svenson RH, Chuang CH, Tatsis GP. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment. Appl Opt. 1995;34:391–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Svenson RH, Littmann L, Cola Vita PG, Zimmern SH, Gallagher JJ, Fedor JM, Selle JG. Laser photoablation of ventricular tachycardia: correlation of diastolic activation times and photoablation effects on cycle length and termination-observations supporting a macroreentrant mechanism. J Am Coll Cardiol. 1992;19(3):607–13.CrossRefPubMedGoogle Scholar
  44. 44.
    d’Avila A, Splinter R, Svenson RH, Scanavacca M, Pruitt E, Kasell J, Sosa E. New perspectives on catheter-based ablation of ventricular tachycardia complicating Chagas’ disease: experimental evidence of the efficacy of near infrared lasers for catheter ablation of Chagas’ VT. J Interv Card Electrophysiol. 2002;7(1):23–38.CrossRefPubMedGoogle Scholar
  45. 45.
    Splinter R, Svenson RH, Littmann L, Chuang C-H, Tuntelder JR, Thompson M, Tatsis GP, Keijzer M. Computer simulated light distributions in myocardial tissues at the Nd-YAG wavelength of 1064 nm. Lasers Med Sci. 1993;8(1):15–21.CrossRefGoogle Scholar
  46. 46.
    Heinze A, Weber HP, Gottschalk W, Unsöld E. Simulation of heat generation for transcatheter Nd-YAG laser photocoagulation of myocardium. Lasers Med Sci. 1994;9(2):119–25.CrossRefGoogle Scholar
  47. 47.
    Fried NM, Lardo AC, Berger RD, Calkins H, Halperin HR. Linear lesions in myocardium created by Nd:YAG laser using diffusing optical fibers: in vitro and in vivo results. Lasers Surg Med. 2000;27(4):295–304.CrossRefPubMedGoogle Scholar
  48. 48.
    Williams MR, Casher JM, Russo MJ, Hong KN, Argenziano M, Oz MC. Laser energy source in surgical atrial fibrillation ablation: preclinical experience. Ann Thorac Surg. 2006;82(6):2260–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Peshko I, Rubtsov V, Vesselov L, Sigal G, Laks H. Fiber photo-catheters for laser treatment of atrial fibrillation. Opt Lasers Eng. 2007;45(4):495–502.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Wagshall A, Abela GS, Maheshwari A, Gupta A, Bowden R, Huang SK. A novel catheter design for laser photocoagulation of the myocardium to ablate ventricular tachycardia. J Interv Card Electrophysiol. 2002;7(1):13–22.CrossRefPubMedGoogle Scholar
  51. 51.
    Smith AM, Mancini MC, Nie S. Bioimaging: second window for in vivo imaging. Nat Nanotechnol. 2009;4(11):710–1.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Tsai C-L, Chen J-C, Wang W-J. Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng. 2001;21(1):7–14.Google Scholar
  53. 53.
    Selle JG, Svenson RH, Sealy WC, Gallagher JJ, Zimmern SH, Fedor JM, Marroum MC, Robicsek F. Successful clinical laser ablation of ventricular tachycardia: a promising new therapeutic method. Ann Thorac Surg. 1986;42(4):380–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Weber HP, Kaltenbrunner W, Heinze A, Steinbach K. Laser catheter coagulation of atrial myocardium for ablation of atrioventricular nodal reentrant tachycardia. First clinical experience. Eur Heart J. 1997;18(3):487–95.CrossRefPubMedGoogle Scholar
  55. 55.
    Svenson RH, Littmann L, Splinter R, Selle JG, Gallagher JJ, Tatsis GP, Linder KD, Seifert KT. Application of lasers for arrhythmia ablation. Chapter 107. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Dordrecht: Elsevier; 1990.Google Scholar
  56. 56.
    Weber HP, Heinze A. Laser catheter ablation of atrial flutter and of atrioventricular nodal reentrant tachycardia in a single session. Eur Heart J. 1994;15(8):1147–9.PubMedGoogle Scholar
  57. 57.
    Dukkipati SR, Kuck KH, Neuzil P, Woollett I, Kautzner J, McElderry HT, Schmidt B, Gerstenfeld EP, Doshi SK, Horton R, Metzner A, d’Avila A, Ruskin JN, Natale A, Reddy VY. Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience. Circ Arrhythm Electrophysiol. 2013;6(3):467–72. doi: 10.1161/CIRCEP.113.000431. Epub 4 Apr 2013.CrossRefPubMedGoogle Scholar
  58. 58.
    Hindricks G, Haverkamp W, Gülker H, Kramer T, Russel U, Teutemacher H, Borggrefe M, Breithardt G. Perkutane endokardiale Nd-YAG-Laserapplikation: Experimentelle Untersuchungen zur Ablation ventrikuliiren Myokards. Z Kardiol. 1991;80:673–80.PubMedGoogle Scholar
  59. 59.
    Pfeiffer D, Moosdorf R, Svenson RH, Littmann L, Grimm W, Kirchhoff PG, Lüderitz B. Epicardial neodymium. YAG laser photocoagulation of ventricular tachycardia without ventriculotomy in patients after myocardial infarction. Circulation. 1996;94(12):3221–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Splinter R, Farahi F, Raja MYA, Svenson RH. Tissue diagnostics by depth profiling of optical characteristics using broadband fiber optic interferometry. Proc. SPIE 2732. Valery V. Tuchin, editor. CIS selected papers: Coherence-Domain methods in biomedical optics. Bellingham: SPIE; 1996. pp. 242–50.Google Scholar
  61. 61.
    Fleming CP, Wang H, Quan KJ, Rollins AM. Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter. J Biomed Opt. 2010;15(3):030516.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Tuchin VV. Light scattering study of tissues. Phys – Uspekhi. 1997;40(5):495–515.CrossRefGoogle Scholar
  63. 63.
    Kim CB, Kesten R, Javier M, Hayase M, Walton AS, Billingham ME, Kernoff R, Oesterle SN. Percutaneous method of laser transmyocardial revascularization. Cathet Cardiovasc Diagn. 1997;40(2):223–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Hamman BL, Theologes TT. Surgical treatment of atrial fibrillation with diode-pumped laser. Proc (Bayl Univ Med Cent). 2009;22(3):230–3.Google Scholar
  65. 65.
    Oeff M, Hug B, Müller G. Transcatheter laser photocoagulation for treatment of cardiac arrhythmias. Lasers Med Sci. 1991;6:355–61.CrossRefGoogle Scholar
  66. 66.
    Buiteveld H, Hakvoort JMH, Donze M. The optical properties of pure water. SPIE Proc Ocean Optics XII. edited by J. S. Jaffe. 1994;2258:174–83.Google Scholar
  67. 67.
    Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of R&DSplinter ConsultantsGrahamUSA

Personalised recommendations