Skip to main content

De-stiffening Strategy, Sodium Balance, and Blockade of the Renin–Angiotensin System

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Arterial stiffening, especially of the large elastic arteries, is a fundamental vascular aging trait, which is, however, accelerated in the presence of genetic and environmental factors. It is an early marker of subclinical arterial disease but also a well-established biomarker of clinical cardiovascular disease events and cardiovascular disease mortality. Preventive strategies calcium channel blockade and allopurinol, a careful individualized de-stiffening strategy on the basis of sodium balance, in combination with the renin–angiotensin system blockade, appears to be the currently available optimal strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benetos A, Laurent S, Hoeks AP, Boutouyrie P, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral artery. Arterioscler Thromb. 1993;13:90–7.

    Article  CAS  PubMed  Google Scholar 

  2. Benetos A, Asmar R, Gautier S, Salvi P, Safar ME. Heterogeneity of the arterial tree in essential hypertension: a noninvasive study of the terminal aorta and the common carotid artery. J Hum Hypertens. 1994;8:501–7.

    CAS  PubMed  Google Scholar 

  3. Plante GE, Alfred J, Chakir M. The blood vessel, linchpin of diabetic lesions. Metabolism. 1999;48:406–9.

    Article  CAS  PubMed  Google Scholar 

  4. Amar J, Chamontin B, Vernier I, Lenfant V, Conte J, Salvador M. Arterial blood pressure changes, circadian rhythm and arterial elasticity in hemodialysed patients. Arch Mal Coeur Vaiss. 1994;87:921–4.

    CAS  PubMed  Google Scholar 

  5. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  6. Girerd X, Chanudet X, Larroque P, Clement R, Laloux B, Safar ME. Early arterial modifications in young patients with borderline hypertension. J Hypertens Suppl. 1989;7 Suppl 1:S45–7.

    Article  CAS  PubMed  Google Scholar 

  7. Vane JR. The history of inhibitors of angiotensin converting enzyme. In: D’ Orleans-Juste P, Plante GE, editors. ACE inhibitors. Basel/Boston: Birkhauser Verlag; 2001. p. 1–10.

    Chapter  Google Scholar 

  8. Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med. 2012;17:330–41.

    Article  PubMed  Google Scholar 

  9. Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension. 2004;44:35–41.

    Article  CAS  PubMed  Google Scholar 

  10. Jablonski KL, Racine ML, Geolfos CJ, Gates PE, Chonchol M, McQueen MB, Seals DR. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61:335–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Frohlich ED. The salt conundrum: a hypothesis. Hypertension. 2007;50:161–6.

    Article  CAS  PubMed  Google Scholar 

  12. Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93:500–5.

    Article  CAS  PubMed  Google Scholar 

  13. Brunner HR, Larahg JH, Baer L, et al. Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med. 1972;286:41–449.

    Article  Google Scholar 

  14. DeClue JW, Guyton AC, Cowley Jr AW, et al. Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog. Circ Res. 1978;43:503–12.

    Article  CAS  PubMed  Google Scholar 

  15. Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev. 1978;58:255–315.

    CAS  PubMed  Google Scholar 

  16. Siche JP, Chevallier M, Tremel F, De Gaudemaris R, Boutelant S, Comparat V, et al. Baroreflex sensitivity and vascular involvement in hypertension. Arch Mal Coeur Vaiss. 1995;88:1243–6.

    CAS  PubMed  Google Scholar 

  17. Ko YS, Coppen SR, Dupont E, Rotherv S, Severs NJ. Regional differentiation of desmin, connexin 43, and connexin 45 expression patterns in rat aortic smooth muscle. Arterioscler Thromb Vasc Biol. 2001;21:355–64.

    Article  CAS  PubMed  Google Scholar 

  18. Safar ME, Van Bortel L, Struijker-Boudier H. Resistance and conduit arteries following converting enzyme inhibition in hypertension. Vasc Res. 1997;81:67–81.

    Article  Google Scholar 

  19. Safar ME, Struijker Boudier HA], Van Bortel MAB, London GM. Arterial structure and function and blockade of the renin-angiotensin system in hypertension. In: D'Orleans-Juste P, Plante GE, editors. ACE inhibitors. Basel/Boston: Birkhauser Verlag; 2001. p. 81–128.

    Google Scholar 

  20. Safar ME, Thuillez CH, Richard V, Benetos A. Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res. 2000;46:269–76.

    Article  CAS  PubMed  Google Scholar 

  21. Safar ME, Benetos A. Factors influencing arterial stiffness in systolic hypertension in the elderly: role of sodium and the renin-angiotensin system. Am J Hypertens. 2003;16:249–58.

    Article  CAS  PubMed  Google Scholar 

  22. Levy BI, Benessiano J, Poitevin P, Safar ME. Endothelium-dependent mechanical properties of the carotid artery in WKY and SHR. Role of angiotensin converting enzyme inhibition. Circ Res. 1990;66:321–8.

    Article  CAS  PubMed  Google Scholar 

  23. Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 2011;462:519–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–61.

    CAS  PubMed  Google Scholar 

  25. Et-Taouil K, Regoli D, Plante GE. A bradykinin B,-receptor dependent smooth muscle event precedes elevation of blood pressure in the spontaneously hypertensive rats. Hypertens. 2004;22 Suppl 2:S200.

    Article  Google Scholar 

  26. Aartsen WM, Hilgers HRP, Schiffers PMH, Daemen MJAP, De May JGR, Smits JFM. Changes in vascular distensibility during angiotensin converting enzyme inhibition involve bradykinin type 2 receptors. J Vasc Res. 2004;41:18–27.

    Article  CAS  PubMed  Google Scholar 

  27. Mamenko M, Zaiki O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na channel-mediated sodium reabsorption in the aldosterone–sensitive distal nephron by bradykinin. Hypertension. 2012;60:1234–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ahimastos A, Natoli AK, Lawler A, Blombery PA, Kingwell BA. Ramipril reduces large artery stiffness in peripheral arterial disease and promotes elastogenic remodeling in cell culture. Hypertension. 2005;45:94-1194-1199.

    Article  Google Scholar 

  29. Mombouli JV, Bissiriou I, Agboton VD, Vanhoutte PM. Bioassay of endothelium-derived hyperpolarizing factor. Biochem Bioplys Res Commun. 1996;221:484–8.

    Article  CAS  Google Scholar 

  30. Chaston DJ, Baillie BK, Courjaret RJ, Heisler JM, Lau KA, Machca K, Nicholson BJ, Asthon A, Matthaei KI, Hill CE. Polymorphisms in endothelial connexin 40 enhances sensitivity to intraluminal pressure and increased arterial stiffness. Arterioscler Thromb Vasc Biol. 2013;33:962–70.

    Article  CAS  PubMed  Google Scholar 

  31. Farand P, Garon A, Plante GE. Modelisation et etude de la structure, de la rigidite et de la permeabilite des gros troncs arteriels. Arch Mal Coeur Vaiss. 2004;97 Suppl 4:42–6.

    Google Scholar 

  32. Womersley JR. Oscillatory flow in arteries: the reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys Med Biol. 1958;2:213–23.

    Google Scholar 

  33. Et-Taouil K, Schiavi P, Levy BI, Plante GE. Sodium intake, large artery stiffness and proteoglycans in the SHR. Hypertension. 2001;38:1172–6.

    Article  CAS  PubMed  Google Scholar 

  34. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–8.

    Article  CAS  PubMed  Google Scholar 

  35. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension. Role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36:312–8.

    Article  CAS  PubMed  Google Scholar 

  36. Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardt JC, Abboud FM. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Simionescu N. Cellular aspects of transcapillary exchanges. Physiol Rev. 1983;63:1536–617.

    CAS  PubMed  Google Scholar 

  38. Belmin J, Corrnan B, Merval R, Tedgui A. Age-related changes in endothelial permeability and distribution volume of albumin in rat aorta. Am J Physiol. 1993;264:H679–85.

    CAS  PubMed  Google Scholar 

  39. Scotland R, Vallance P, Ahluwalia A. Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Br J Pharmacol. 1999;128:1229–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gould AB, Goodman SA. Effect of a renin-system inhibitor on blood-vessel adaptation in spontaneously hypertensive rats. J Hypertens Suppl. 1987;5:S53–8.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson RJ, Feig D, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension. 2005;45:18–20.

    Article  CAS  PubMed  Google Scholar 

  42. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–97.

    Article  CAS  PubMed  Google Scholar 

  43. Bian S, Guo H, Ye P, Luo L, Wu H, Xiao W. Serum uric Acid level and diverse impacts on regional arterial stiffness and wave reflection. Iran J Public Health. 2012;41:33–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ishizaka N, Ishizaka Y, Toda E, Hashimoto H, Nagai R, Yamakado M. Higher serum uric acid is associated with increased arterial stiffness in Japanese individuals. Atherosclerosis. 2007;192:131–7.

    Article  CAS  PubMed  Google Scholar 

  45. Eräranta A, Kurra V, Tahvanainen AM, Vehmas TI, Kööbi P, Lakkisto P, Tikkanen I, Niemelä OJ, Mustonen JT, Pörsti IH. Oxonic acid-induced hyperuricemia elevates plasma aldosterone in experimental renal insufficiency. J Hypertens. 2008;26:1661–8.

    Article  PubMed  Google Scholar 

  46. Rekhraj S, Gandy SJ, Szwejkowski BR, Nadir MA, Noman A, Houston JG, Lang CC, George J, Struthers AD. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–32.

    Article  CAS  PubMed  Google Scholar 

  47. Plante GE, Durivage J, Lemieux G. Renal excretion of hydrogen in primary gout. Metabolism. 1968;17:377–82.

    Article  CAS  PubMed  Google Scholar 

  48. Gutman AB, Yu TF. Gout: a derangement of purine metabolism. Adv Intern Med. 1952;5:227–302.

    CAS  PubMed  Google Scholar 

  49. Plante GE, Bissonnette M, Sirois MG, Regoli D, Sirois P. Renal permeability alteration precedes hypertension and involves bradykinin in the spontaneously hypertensive rat. J Clin Invest. 1992;89:2030–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kawasaki T, Sasayama S, Yagi SI, Asakawa T, Hirai T. Non-invasive assessment of age related changes in stiffness of the human arteries. Cardiovasc Res. 1987;21:678–87.

    Article  CAS  PubMed  Google Scholar 

  51. Simon AC, Levenson JA, Bouthier JA, Safar ME, Avolio AO. Evidence of early degenerative changes in large arteries in human essential hypertension. Hypertension. 1985;7(5):675–80.

    Article  CAS  PubMed  Google Scholar 

  52. Lantelme P, Milon H, Gharib C, Gayet C, Fortrat JO. White coat effect and reactivity to stress: cardiovascular and autonomic nervous system responses. Hypertension. 1998;31(4):1021–9.

    Article  CAS  PubMed  Google Scholar 

  53. Siche JP, Mansour P, De Gaudemaris R, Mallion JM. Arterial compliance during exercise in hypertensive and normal subjects of the same age. Arch Mal Coeur Vaiss. 1989;82(7):1077–82.

    CAS  PubMed  Google Scholar 

  54. Van Bortel LM, Struijker-Boudier HA, Safar ME. Pulse pressure, arterial stiffness, and drug treatment of hypertension. Hypertension. 2001;38:914–21.

    Article  PubMed  Google Scholar 

  55. Lacourciere Y, Beliveau R, Conter HS, Burgess ED, Lepage S, Pesant Y, et al. Effects of perindopril on elastic and structural properties of large arteries in essential hypertension. Can J Cardiol. 2004;20:795–9.

    CAS  PubMed  Google Scholar 

  56. London GM, Asmar RG, O'Rourke MF, Safar ME, REASON Project Investigators. Mechanism(s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: comparison with atenolol. J Am Coll Cardiol. 2004;43:92–9.

    Article  CAS  PubMed  Google Scholar 

  57. Hirata K, Vlachopoulos C, Adji A, O’Rourke MF. Benefits from angiotensin-converting enzyme inhibitor ‘beyond blood pressure lowering’: beyond blood pressure or beyond the brachial artery. J Hypertens. 2005;23:5551–6.

    Article  Google Scholar 

  58. Mitchell GF, Izzo JL, Lacourciere Y, Ouellet JP, Neutel J, Qian C, et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension. Results of the conduit hemodynamics of omapatrilat international research study. Circulation. 2002;105:2955–61.

    Article  CAS  PubMed  Google Scholar 

  59. Protogerou AD, Stergiou GS, Vlachopoulos C, Blacher J, Achimastos A. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part II: Evidence for specific class-effects of antihypertensive drugs on pressure amplification. Curr Pharm Des. 2009;15:245–53.

    Article  PubMed  Google Scholar 

  60. Shahin Y, Khan JA, Chetter I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomized controlled trials. Atherosclerosis. 2012;221:18–33.

    Article  CAS  PubMed  Google Scholar 

  61. Ong KT, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, Boutouyrie P. Aortic stiffness is reduced beyond blood pressure lowering by short term and long term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29:1034–42.

    Article  CAS  PubMed  Google Scholar 

  62. Asmar R, Benetos A, Chaouche-Teyara K, Raveau-Landon C, Safar M. Comparison of effects of felodipine versus hydrochlorothiazide on arterial diameter and pulse-wave velocity in essential hypertension. Am J Cardiol. 1993;72:794–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bénétos A, Laflèche A, Asmar R, Gautier S, Safar A, Safar ME. Arterial stiffness, hydrochlorothiazide and converting enzyme inhibition in essential hypertension. J Hum Hypertens. 1996;10:77–82.

    PubMed  Google Scholar 

  64. Spoelstra-de Man AM, van Ittersum FJ, Schram MT, Kamp O, van Dijk RA, Ijzerman RG, Twisk JW, Brouwer CB, Stehouwer CD. Aggressive antihypertensive strategies based on hydrochlorothiazide, candesartan or lisinopril decrease left ventricular mass and improve arterial compliance in patients with type II diabetes mellitus and hypertension. J Hum Hypertens. 2006;20:599–611.

    Article  CAS  PubMed  Google Scholar 

  65. Mahmud A, Feely J. Effect of angiotensin ii receptor blockade on arterial stiffness: beyond blood pressure reduction. Am J Hypertens. 2002;15:1092–5.

    Article  CAS  PubMed  Google Scholar 

  66. Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54:409–13.

    Article  CAS  PubMed  Google Scholar 

  67. Agnoletti D, Zhang Y, Borghi C, Blacher J, Safar ME. Effects of antihypertensive drugs on central blood pressure in humans: a preliminary observation. Am J Hypertens. 2013;26:1045–52.

    Article  CAS  PubMed  Google Scholar 

  68. García-Ortiz L, Recio-Rodríguez JI, Rodríguez-Sánchez E, Patino-Alonso MC, Agudo-Conde C, Rodríguez-Martín C, Castaño-Sánchez C, Runkle I, Gómez-Marcos MA. Sodium and potassium intake present a J-shaped relationship with arterial stiffness and carotid intima-media thickness. Atherosclerosis. 2012;225:497–503.

    Article  PubMed  Google Scholar 

  69. Alderman MH. Presidential address: 21st scientific meeting of international hypertension: dietary sodium and cardiovascular disease: the “J”-shaped relation. J Hypertens. 2011;75:903–7.

    Google Scholar 

  70. Cohen H, Hailpern S, Fang J, et al. Sodium intake and mortality in the NHANES II follow-up study. Am J Med. 2006;1191:275e14.

    Google Scholar 

  71. Taylor RS, Ashton KE, Moxham T, et al. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24:843–53.

    Article  CAS  PubMed  Google Scholar 

  72. O’Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306:2229–38.

    PubMed  Google Scholar 

  73. He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and asian mild hypertensives. Hypertension. 2009;54:482.

    Article  CAS  PubMed  Google Scholar 

  74. Asmar RG, London GM, O'Rourke ME, Safar ME, REASON Project Coordinators and Investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38:922–6.

    Article  CAS  PubMed  Google Scholar 

  75. Matsui Y, Eguchi K, O'Rourke MF, Ishikawa J, Miyashita H, Shimada K, Kario K. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009;54:716–23.

    Article  CAS  PubMed  Google Scholar 

  76. Weber MA, Jamerson K, Bakris GL, Wier MR, ZAppe D, Zhang Y, Dalhof B, Velazquez EJ, Pitt B. Effects of body size and hypertension treatments on cardiovascular events rates: subanalysis of the ACCOMPLISH randomized controlled trial. Lancet. 2013;381:537–45.

    Article  PubMed  Google Scholar 

  77. Sealey JE, Alderman MH, Furberg CD, Laragh JH. Renin-angiotensin system blockers may create more risk than reward for sodium-depleted cardiovascular patients with high plasma renin levels. Am J Hypertens. 2013;26:727–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanase D. Protogerou MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Protogerou, A.D., Safar, M.E., Plante, G.E., Blacher, J. (2014). De-stiffening Strategy, Sodium Balance, and Blockade of the Renin–Angiotensin System. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_43

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics