Advertisement

De-stiffening Strategy, Sodium Balance, and Blockade of the Renin–Angiotensin System

  • Athanase D. ProtogerouEmail author
  • Michel E. Safar
  • Gerard E. Plante
  • Jacques Blacher
Chapter

Abstract

Arterial stiffening, especially of the large elastic arteries, is a fundamental vascular aging trait, which is, however, accelerated in the presence of genetic and environmental factors. It is an early marker of subclinical arterial disease but also a well-established biomarker of clinical cardiovascular disease events and cardiovascular disease mortality. Preventive strategies calcium channel blockade and allopurinol, a careful individualized de-stiffening strategy on the basis of sodium balance, in combination with the renin–angiotensin system blockade, appears to be the currently available optimal strategy.

Keywords

Sodium balance Salt restriction diet Diuretics Renin–angiotensin system blockade Arterial stiffness 

References

  1. 1.
    Benetos A, Laurent S, Hoeks AP, Boutouyrie P, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral artery. Arterioscler Thromb. 1993;13:90–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Benetos A, Asmar R, Gautier S, Salvi P, Safar ME. Heterogeneity of the arterial tree in essential hypertension: a noninvasive study of the terminal aorta and the common carotid artery. J Hum Hypertens. 1994;8:501–7.PubMedGoogle Scholar
  3. 3.
    Plante GE, Alfred J, Chakir M. The blood vessel, linchpin of diabetic lesions. Metabolism. 1999;48:406–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Amar J, Chamontin B, Vernier I, Lenfant V, Conte J, Salvador M. Arterial blood pressure changes, circadian rhythm and arterial elasticity in hemodialysed patients. Arch Mal Coeur Vaiss. 1994;87:921–4.PubMedGoogle Scholar
  5. 5.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.PubMedCrossRefGoogle Scholar
  6. 6.
    Girerd X, Chanudet X, Larroque P, Clement R, Laloux B, Safar ME. Early arterial modifications in young patients with borderline hypertension. J Hypertens Suppl. 1989;7 Suppl 1:S45–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Vane JR. The history of inhibitors of angiotensin converting enzyme. In: D’ Orleans-Juste P, Plante GE, editors. ACE inhibitors. Basel/Boston: Birkhauser Verlag; 2001. p. 1–10.CrossRefGoogle Scholar
  8. 8.
    Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med. 2012;17:330–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension. 2004;44:35–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Jablonski KL, Racine ML, Geolfos CJ, Gates PE, Chonchol M, McQueen MB, Seals DR. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61:335–43.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Frohlich ED. The salt conundrum: a hypothesis. Hypertension. 2007;50:161–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93:500–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Brunner HR, Larahg JH, Baer L, et al. Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med. 1972;286:41–449.CrossRefGoogle Scholar
  14. 14.
    DeClue JW, Guyton AC, Cowley Jr AW, et al. Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog. Circ Res. 1978;43:503–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev. 1978;58:255–315.PubMedGoogle Scholar
  16. 16.
    Siche JP, Chevallier M, Tremel F, De Gaudemaris R, Boutelant S, Comparat V, et al. Baroreflex sensitivity and vascular involvement in hypertension. Arch Mal Coeur Vaiss. 1995;88:1243–6.PubMedGoogle Scholar
  17. 17.
    Ko YS, Coppen SR, Dupont E, Rotherv S, Severs NJ. Regional differentiation of desmin, connexin 43, and connexin 45 expression patterns in rat aortic smooth muscle. Arterioscler Thromb Vasc Biol. 2001;21:355–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Safar ME, Van Bortel L, Struijker-Boudier H. Resistance and conduit arteries following converting enzyme inhibition in hypertension. Vasc Res. 1997;81:67–81.CrossRefGoogle Scholar
  19. 19.
    Safar ME, Struijker Boudier HA], Van Bortel MAB, London GM. Arterial structure and function and blockade of the renin-angiotensin system in hypertension. In: D'Orleans-Juste P, Plante GE, editors. ACE inhibitors. Basel/Boston: Birkhauser Verlag; 2001. p. 81–128.Google Scholar
  20. 20.
    Safar ME, Thuillez CH, Richard V, Benetos A. Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res. 2000;46:269–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Safar ME, Benetos A. Factors influencing arterial stiffness in systolic hypertension in the elderly: role of sodium and the renin-angiotensin system. Am J Hypertens. 2003;16:249–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Levy BI, Benessiano J, Poitevin P, Safar ME. Endothelium-dependent mechanical properties of the carotid artery in WKY and SHR. Role of angiotensin converting enzyme inhibition. Circ Res. 1990;66:321–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 2011;462:519–28.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–61.PubMedGoogle Scholar
  25. 25.
    Et-Taouil K, Regoli D, Plante GE. A bradykinin B,-receptor dependent smooth muscle event precedes elevation of blood pressure in the spontaneously hypertensive rats. Hypertens. 2004;22 Suppl 2:S200.CrossRefGoogle Scholar
  26. 26.
    Aartsen WM, Hilgers HRP, Schiffers PMH, Daemen MJAP, De May JGR, Smits JFM. Changes in vascular distensibility during angiotensin converting enzyme inhibition involve bradykinin type 2 receptors. J Vasc Res. 2004;41:18–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Mamenko M, Zaiki O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na channel-mediated sodium reabsorption in the aldosterone–sensitive distal nephron by bradykinin. Hypertension. 2012;60:1234–41.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ahimastos A, Natoli AK, Lawler A, Blombery PA, Kingwell BA. Ramipril reduces large artery stiffness in peripheral arterial disease and promotes elastogenic remodeling in cell culture. Hypertension. 2005;45:94-1194-1199.CrossRefGoogle Scholar
  29. 29.
    Mombouli JV, Bissiriou I, Agboton VD, Vanhoutte PM. Bioassay of endothelium-derived hyperpolarizing factor. Biochem Bioplys Res Commun. 1996;221:484–8.CrossRefGoogle Scholar
  30. 30.
    Chaston DJ, Baillie BK, Courjaret RJ, Heisler JM, Lau KA, Machca K, Nicholson BJ, Asthon A, Matthaei KI, Hill CE. Polymorphisms in endothelial connexin 40 enhances sensitivity to intraluminal pressure and increased arterial stiffness. Arterioscler Thromb Vasc Biol. 2013;33:962–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Farand P, Garon A, Plante GE. Modelisation et etude de la structure, de la rigidite et de la permeabilite des gros troncs arteriels. Arch Mal Coeur Vaiss. 2004;97 Suppl 4:42–6.Google Scholar
  32. 32.
    Womersley JR. Oscillatory flow in arteries: the reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys Med Biol. 1958;2:213–23.Google Scholar
  33. 33.
    Et-Taouil K, Schiavi P, Levy BI, Plante GE. Sodium intake, large artery stiffness and proteoglycans in the SHR. Hypertension. 2001;38:1172–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension. Role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36:312–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardt JC, Abboud FM. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133–40.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Simionescu N. Cellular aspects of transcapillary exchanges. Physiol Rev. 1983;63:1536–617.PubMedGoogle Scholar
  38. 38.
    Belmin J, Corrnan B, Merval R, Tedgui A. Age-related changes in endothelial permeability and distribution volume of albumin in rat aorta. Am J Physiol. 1993;264:H679–85.PubMedGoogle Scholar
  39. 39.
    Scotland R, Vallance P, Ahluwalia A. Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Br J Pharmacol. 1999;128:1229–34.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gould AB, Goodman SA. Effect of a renin-system inhibitor on blood-vessel adaptation in spontaneously hypertensive rats. J Hypertens Suppl. 1987;5:S53–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson RJ, Feig D, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension. 2005;45:18–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–97.PubMedCrossRefGoogle Scholar
  43. 43.
    Bian S, Guo H, Ye P, Luo L, Wu H, Xiao W. Serum uric Acid level and diverse impacts on regional arterial stiffness and wave reflection. Iran J Public Health. 2012;41:33–41.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ishizaka N, Ishizaka Y, Toda E, Hashimoto H, Nagai R, Yamakado M. Higher serum uric acid is associated with increased arterial stiffness in Japanese individuals. Atherosclerosis. 2007;192:131–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Eräranta A, Kurra V, Tahvanainen AM, Vehmas TI, Kööbi P, Lakkisto P, Tikkanen I, Niemelä OJ, Mustonen JT, Pörsti IH. Oxonic acid-induced hyperuricemia elevates plasma aldosterone in experimental renal insufficiency. J Hypertens. 2008;26:1661–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Rekhraj S, Gandy SJ, Szwejkowski BR, Nadir MA, Noman A, Houston JG, Lang CC, George J, Struthers AD. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Plante GE, Durivage J, Lemieux G. Renal excretion of hydrogen in primary gout. Metabolism. 1968;17:377–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Gutman AB, Yu TF. Gout: a derangement of purine metabolism. Adv Intern Med. 1952;5:227–302.PubMedGoogle Scholar
  49. 49.
    Plante GE, Bissonnette M, Sirois MG, Regoli D, Sirois P. Renal permeability alteration precedes hypertension and involves bradykinin in the spontaneously hypertensive rat. J Clin Invest. 1992;89:2030–4.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kawasaki T, Sasayama S, Yagi SI, Asakawa T, Hirai T. Non-invasive assessment of age related changes in stiffness of the human arteries. Cardiovasc Res. 1987;21:678–87.PubMedCrossRefGoogle Scholar
  51. 51.
    Simon AC, Levenson JA, Bouthier JA, Safar ME, Avolio AO. Evidence of early degenerative changes in large arteries in human essential hypertension. Hypertension. 1985;7(5):675–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Lantelme P, Milon H, Gharib C, Gayet C, Fortrat JO. White coat effect and reactivity to stress: cardiovascular and autonomic nervous system responses. Hypertension. 1998;31(4):1021–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Siche JP, Mansour P, De Gaudemaris R, Mallion JM. Arterial compliance during exercise in hypertensive and normal subjects of the same age. Arch Mal Coeur Vaiss. 1989;82(7):1077–82.PubMedGoogle Scholar
  54. 54.
    Van Bortel LM, Struijker-Boudier HA, Safar ME. Pulse pressure, arterial stiffness, and drug treatment of hypertension. Hypertension. 2001;38:914–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Lacourciere Y, Beliveau R, Conter HS, Burgess ED, Lepage S, Pesant Y, et al. Effects of perindopril on elastic and structural properties of large arteries in essential hypertension. Can J Cardiol. 2004;20:795–9.PubMedGoogle Scholar
  56. 56.
    London GM, Asmar RG, O'Rourke MF, Safar ME, REASON Project Investigators. Mechanism(s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: comparison with atenolol. J Am Coll Cardiol. 2004;43:92–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirata K, Vlachopoulos C, Adji A, O’Rourke MF. Benefits from angiotensin-converting enzyme inhibitor ‘beyond blood pressure lowering’: beyond blood pressure or beyond the brachial artery. J Hypertens. 2005;23:5551–6.CrossRefGoogle Scholar
  58. 58.
    Mitchell GF, Izzo JL, Lacourciere Y, Ouellet JP, Neutel J, Qian C, et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension. Results of the conduit hemodynamics of omapatrilat international research study. Circulation. 2002;105:2955–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Protogerou AD, Stergiou GS, Vlachopoulos C, Blacher J, Achimastos A. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part II: Evidence for specific class-effects of antihypertensive drugs on pressure amplification. Curr Pharm Des. 2009;15:245–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Shahin Y, Khan JA, Chetter I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomized controlled trials. Atherosclerosis. 2012;221:18–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Ong KT, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, Boutouyrie P. Aortic stiffness is reduced beyond blood pressure lowering by short term and long term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29:1034–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Asmar R, Benetos A, Chaouche-Teyara K, Raveau-Landon C, Safar M. Comparison of effects of felodipine versus hydrochlorothiazide on arterial diameter and pulse-wave velocity in essential hypertension. Am J Cardiol. 1993;72:794–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Bénétos A, Laflèche A, Asmar R, Gautier S, Safar A, Safar ME. Arterial stiffness, hydrochlorothiazide and converting enzyme inhibition in essential hypertension. J Hum Hypertens. 1996;10:77–82.PubMedGoogle Scholar
  64. 64.
    Spoelstra-de Man AM, van Ittersum FJ, Schram MT, Kamp O, van Dijk RA, Ijzerman RG, Twisk JW, Brouwer CB, Stehouwer CD. Aggressive antihypertensive strategies based on hydrochlorothiazide, candesartan or lisinopril decrease left ventricular mass and improve arterial compliance in patients with type II diabetes mellitus and hypertension. J Hum Hypertens. 2006;20:599–611.PubMedCrossRefGoogle Scholar
  65. 65.
    Mahmud A, Feely J. Effect of angiotensin ii receptor blockade on arterial stiffness: beyond blood pressure reduction. Am J Hypertens. 2002;15:1092–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54:409–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Agnoletti D, Zhang Y, Borghi C, Blacher J, Safar ME. Effects of antihypertensive drugs on central blood pressure in humans: a preliminary observation. Am J Hypertens. 2013;26:1045–52.PubMedCrossRefGoogle Scholar
  68. 68.
    García-Ortiz L, Recio-Rodríguez JI, Rodríguez-Sánchez E, Patino-Alonso MC, Agudo-Conde C, Rodríguez-Martín C, Castaño-Sánchez C, Runkle I, Gómez-Marcos MA. Sodium and potassium intake present a J-shaped relationship with arterial stiffness and carotid intima-media thickness. Atherosclerosis. 2012;225:497–503.PubMedCrossRefGoogle Scholar
  69. 69.
    Alderman MH. Presidential address: 21st scientific meeting of international hypertension: dietary sodium and cardiovascular disease: the “J”-shaped relation. J Hypertens. 2011;75:903–7.Google Scholar
  70. 70.
    Cohen H, Hailpern S, Fang J, et al. Sodium intake and mortality in the NHANES II follow-up study. Am J Med. 2006;1191:275e14.Google Scholar
  71. 71.
    Taylor RS, Ashton KE, Moxham T, et al. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24:843–53.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306:2229–38.PubMedGoogle Scholar
  73. 73.
    He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and asian mild hypertensives. Hypertension. 2009;54:482.PubMedCrossRefGoogle Scholar
  74. 74.
    Asmar RG, London GM, O'Rourke ME, Safar ME, REASON Project Coordinators and Investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38:922–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Matsui Y, Eguchi K, O'Rourke MF, Ishikawa J, Miyashita H, Shimada K, Kario K. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009;54:716–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Weber MA, Jamerson K, Bakris GL, Wier MR, ZAppe D, Zhang Y, Dalhof B, Velazquez EJ, Pitt B. Effects of body size and hypertension treatments on cardiovascular events rates: subanalysis of the ACCOMPLISH randomized controlled trial. Lancet. 2013;381:537–45.PubMedCrossRefGoogle Scholar
  77. 77.
    Sealey JE, Alderman MH, Furberg CD, Laragh JH. Renin-angiotensin system blockers may create more risk than reward for sodium-depleted cardiovascular patients with high plasma renin levels. Am J Hypertens. 2013;26:727–38.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Athanase D. Protogerou
    • 1
    Email author
  • Michel E. Safar
    • 2
  • Gerard E. Plante
    • 3
  • Jacques Blacher
    • 2
  1. 1.Cardiovascular Research Laboratory and Hypertension Center, First Department of Propedeutic and Internal Medicine“Laiko” Hospital, Medical School, National and Kapodistrian University of AthensAthensGreece
  2. 2.Department of MedicineDiagnosis and Therapeutics Center, Hôtel-Dieu Hospital, Assistance Publique des Hôpitaux de Paris, Paris Descartes UniversityParisFrance
  3. 3.Institut de Pharmacologie, Universitye de SherbrookeSherbrookeCanada

Personalised recommendations