Direct Measurement of Local Arterial Stiffness and Pulse Pressure

  • Luc M. Van Bortel
  • Tine De Backer
  • Patrick Segers


Arterial stiffness differs between different sites in the arterial tree. It can, therefore, be of interest to know the stiffness at a particular arterial site. Local arterial stiffness assesses stiffness at a cross section of an artery. At present echo-tracking methods are the gold standard to measure local wall properties of superficial arteries. This technique measures with very high precision the diameter and diameter change of a cross section of an artery. For deep arteries like the aorta, CT and MRI techniques have been developed. Although less than echo tracking, the accuracy of these latter techniques increased over recent years. Assuming the cross section being circular, the change in cross-sectional area can be calculated from diameter and diameter change. From the change in cross-sectional area and change in pressure, the local vessel wall properties distensibility coefficient (DC) and cross-sectional compliance (CC) can be calculated. Distensibility is a measure of wall elasticity and the inverse of stiffness. Compliance reflects the buffering capacity of the artery. Local stiffness assessment is the only method that can assess both wall properties. In addition, if the pressure curve is available, the full pressure–diameter relation can be shown and wall properties at a particular pressure or pressure range (isobaric conditions) can be calculated. Alternative methods have also been developed and are briefly discussed. The major source of error in calculating local arterial stiffness comes from the assessment of the arterial pressure at the same arterial site. Different methods to calculate this local pressure are discussed.


Local arterial stiffness Distensibility Compliance Pulse pressure Local blood pressure Methods 



The authors thank Dan De Vos, MD, for his contribution on MR imaging.


  1. 1.
    Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003;138(1):10–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Benetos A, Zureik M, Morcet J, Thomas F, Bean K, Safar M, et al. A decrease in diastolic blood pressure combined with an increase in systolic blood pressure is associated with a higher cardiovascular mortality in men. J Am Coll Cardiol. 2000;35(3):673–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Blacher J, Staessen JA, Girerd X, Gasowski J, Thijs L, Liu L, et al. Pulse pressure not mean pressure determines cardiovascular risk in older hypertensive patients. Arch Intern Med. 2000;160(8):1085–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Bortel LM, Hoeks AP, Kool MJ, Struijker-Boudier HA. Introduction to large artery properties as a target for risk reduction by antihypertensive therapy. J Hypertens Suppl. 1992;10(6):S123–6.PubMedGoogle Scholar
  5. 5.
    O’Rourke MF. Basic concepts for the understanding of large arteries in hypertension. J Cardiovasc Pharmacol. 1985;7 Suppl 2:S14–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Gutstein DE, Fuster V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc Res. 1999;41(2):323–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Richardson PD. Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann Biomed Eng. 2002;30(4):524–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Tang D, Yang C, Kobayashi S, Ku DN. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J Biomech Eng. 2004;126(3):363–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Paini A, Boutouyrie P, Calvet D, Zidi M, Agabiti-Rosei E, Laurent S. Multiaxial mechanical characteristics of carotid plaque: analysis by multiarray echotracking system. Stroke. 2007;38(1):117–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am J Hypertens. 2002;15(5):445–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoeks AP, Brands PJ, Smeets FA, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol. 1990;16(2):121–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, Vanmolkot FH, Staessen JA, Kragten JA, et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19(6):1037–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Palombo C, Kozakova M, Guraschi N, Bini G, Cesana F, Castoldi G, et al. Radiofrequency-based carotid wall tracking: a comparison between two different systems. J Hypertens. 2012;30(8):1614–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonnefous O, Montaudon M, Sananes J, Denis E. Noninvasive echographic techniques for arterial wall characterization. In: Levy M, Schneider SC, McAvoy BR, editors. IEEE Ultrasonics Symposium, Proceedings Vols 1 and 2. Texas, USA: San Antonio 1996, pp.1059–64.Google Scholar
  15. 15.
    Ramnarine KV, Hartshorne T, Sensier Y, Naylor M, Walker J, Naylor AR, et al. Tissue Doppler imaging of carotid plaque wall motion: a pilot study. Cardiovasc Ultrasound. 2003;1:17.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rabben SI, Baerum S, Sorhus V, Torp H. Ultrasound-based vessel wall tracking: an auto-correlation technique with RF center frequency estimation. Ultrasound Med Biol. 2002;28(4):507–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Segers P, Rabben SI, De BJ, De SJ, Gillebert TC, Van BL, et al. Functional analysis of the common carotid artery: relative distension differences over the vessel wall measured in vivo. J Hypertens. 2004;22(5):973–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Resnick LM, Militianu D, Cunnings AJ, Pipe JG, Evelhoch JL, Soulen RL. Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension. 1997;30(3 Pt 2):654–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Danias PG, Tritos NA, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of aortic elasticity determined by cardiovascular magnetic resonance imaging in obese versus lean adults. Am J Cardiol. 2003;91(2):195–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Kool MJ, Kool MJ, Van Merode T, Reneman RS, Hoeks AP, Struyker Boudier HA, Van Bortel LM. Evaluation of reproducibility of a vessel wall movement detector system for assessment of large artery properties. Cardiovasc Res. 1994;28(5):610–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.PubMedCrossRefGoogle Scholar
  22. 22.
    Khir AW, O’Brien A, Gibbs JS, Parker KH. Determination of wave speed and wave separation in the arteries. J Biomech. 2001;34(9):1145–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Rabben SI, Stergiopulos N, Hellevik LR, Smiseth OA, Slordahl S, Urheim S, et al. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J Biomech. 2004;37(10):1615–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Feng J, Khir AW. Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech. 2010;43(3):455–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med. 2002;47(4):649–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Swillens A, Taelman L, Degroote J, Vierendeels J, Segers P. Comparison of non-invasive methods for measurement of local pulse wave velocity using FSI-Simulations and in vivo data. Ann Biomed Eng. 2013;41(7):1567–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Hermeling E, Reesink KD, Kornmann LM, Reneman RS, Hoeks AP. The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. J Hypertens. 2009;27(10):2028–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Luo J, Li RX, Konofagou EE. Pulse wave imaging of the human carotid artery: an in vivo feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(1):174–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, et al. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55(10):1032–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, Ting CT, Lakatta EG, Yin FC, Chou P, Chen CH. Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens. 2011;29(3):454–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Laurent S, Tropeano AI, Lillo-Lelouet A, Jondeau G, Laloux B, Boutouyrie P. Local pulse pressure is a major determinant of large artery remodelling. Clin Exp Pharmacol Physiol. 2001;28(12):1011–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Pauca AL, Wallenhaupt SL, Kon ND, Tucker WY. Does radial artery pressure accurately reflect aortic pressure? Chest. 1992;102(4):1193–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Nichols W, O’Rourke M, editors. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London/Sydney/Auckland: Arnold; 1998.Google Scholar
  35. 35.
    Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM. Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension. 2005;46(1):244–8.PubMedCrossRefGoogle Scholar
  36. 36.
    London G, Guerin A, Pannier B, Marchais S, Benetos A, Safar M. Increased systolic pressure in chronic uremia. Role of arterial wave reflections. Hypertension. 1992;20(1):10–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb. 1993;13(1):90–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Kelly R, Hayward C, Avolio A, O’Rourke M. Non-invasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80:1652–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech. 1983;16(2):141–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthys K, Verdonck P. Development and modelling of arterial applanation tonometry: a review. Technol Health Care. 2002;10(1):65–76.PubMedGoogle Scholar
  41. 41.
    Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelly R, Fitchett D. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol. 1992;20(4):952–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Milnor W, editor. Hemodynamics. The normal hemodynamic state. Baltimore: Williams and Wilkins; 1982.Google Scholar
  44. 44.
    Bos WJ, Verrij E, Vincent HH, Westerhof BE, Parati G, van Montfrans GA. How to assess mean blood pressure properly at the brachial artery level. J Hypertens. 2007;25(4):751–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Laugesen E, Rossen NB, Peters CD, Mæng M, Ebbehøj E, Knudsen ST, Hansen KW, Bøtker HE, Poulsen PL. Assessment of central blood pressure in patients with type 2 diabetes: a comparison between sphygmocor and invasively measured values. Am J Hypertens. 2014;27(2):169–76.PubMedCrossRefGoogle Scholar
  46. 46.
    O’Brien E, Petrie J, Littler W, de Swiet M, Padfield PL, Altman DG, et al. An outline of the revised British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J Hypertens. 1993;11(6):677–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Correll RW. Theoretical analysis and preliminary development of an indirect blood pressure recording system. MS thesis. Cambridge: MIT; 1978.Google Scholar
  48. 48.
    Ghista DN, Jayaraman G, Sandler H. Analysis for the non-invasive determination of arterial properties and for the transcutaneous continuous monitoring of arterial blood pressure. Med Biol Eng Comput. 1978;16(6):715–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Kips J, Vanmolkot F, Mahieu D, Vermeersch I, Fabry S, de Hoon J, et al. The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure. Physiol Meas. 2010;31(4):543–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14(2):160–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–36.PubMedCrossRefGoogle Scholar
  52. 52.
    Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38(4):932–7.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Rourke MF, Pauca AL. Augmentation of the aortic and central arterial pressure waveform. Blood Press Monit. 2004;9(4):179–85.PubMedCrossRefGoogle Scholar
  54. 54.
    White WB, Berson AS, Robbins C, Jamieson MJ, Prisant M, Roccella E, Sheps SG. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension. 1993;21:504–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Davies JI, Band MM, Pringle S, Ogston S, Struthers AD. Peripheral blood pressure measurement is as good as applanation tonometry at predicting ascending aortic blood pressure. J Hypertens. 2003;21(3):571–6.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Rourke M, Avolio A. Assessment of central arterial pressure? J Hypertens. 2003;21(7):1425–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, Bekaert S, De Backer G, Gillebert T, Verdonck P, Van Bortel L. Asklepios investigators. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension. 2009;54(2):414–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Adji A, O’Rourke MF. Brachial artery tonometry and the Popeye phenomenon: explanation of anomalies in generating central from upper limb pressure waveforms. J Hypertens. 2012;30(8):1540–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Luc M. Van Bortel
    • 1
  • Tine De Backer
    • 1
    • 2
  • Patrick Segers
    • 3
  1. 1.Clinical PharmacologyHeymans Institute of Pharmacology, Ghent UniversityGhentBelgium
  2. 2.Cardiovascular DiseasesUniversity Hospital GhentGhentBelgium
  3. 3.Institute Biomedical Technology (IBITEch), iMinds Medical IT, Ghent UniversityGhentBelgium

Personalised recommendations