Arterial Stiffness, Central Blood Pressure and Coronary Heart Disease

  • Piotr JankowskiEmail author
  • Jacques Blacher
  • Thomas Weber


Central blood pressure is closer to the heart, coronary and carotid arteries, which are the most important sites of cardiovascular events. The influence of cyclic stretch (owing to cyclic changes in blood pressure) on the arterial wall has been documented at every stage of atherosclerosis development. Apart from mediating atherosclerosis progression and plaque instability, the pulsatile component of blood pressure is the main mechanism leading to plaque rupture and, consequently, to acute coronary syndromes and other vascular complications. A number of studies reported a significant relation between central blood pressure and the extant of coronary atherosclerosis as well as between central blood pressure and cardiovascular risk in patients with coronary heart disease. A lot of attention has been given recently to break the link between pulse pressure and cardiovascular events. Because of the vicious circle consisting of arterial wall stiffness, pulse pressure, and atherosclerosis, the most promising intervention is reduction in arterial stiffness, although increase of the potential benefit requires interventions aiming at all three components of the vicious circle.


Blood pressure Hypertension Atherosclerosis Coronary artery disease Cardiovascular risk Arterial stiffness Arterial compliance Risk factor Pulse pressure 


  1. 1.
    Powles JW, Zatonski W, Vander Hoorn S, Ezzati M. The contribution of leading diseases and risk factors to excess losses of healthy life in Eastern Europe: burden of disease study. BMC Public Health. 2005;5:116.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Jankowski P, Bilo G, Kawecka-Jaszcz K. The pulsatile component of BP: its role in the pathogenesis of atherosclerosis. Blood Press. 2007;16:238–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 4th ed. London: Edward Arnold; 2006.Google Scholar
  4. 4.
    Black HR. The paradigm has shifted to systolic blood pressure. Hypertension. 1999;34:386–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Mancia G, Grassi G. Systolic and diastolic blood pressure control in antihypertensive drug trials. J Hypertens. 2002;20:1461–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Darne B, Girerd X, Safar MF, Cambien F, Guize L. Pulsatile versus steady component of blood pressure: a cross-sectional analysis and a prospective analysis on cardiovascular mortality. Hypertension. 1989;13:392–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51:848–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Gambillara V, Thacher T, Silacci P, Stergiopulos N. Effects of reduced cyclic stretch on vascular smooth muscle cell function of pig carotids perfused ex vivo. Am J Hypertens. 2008;21:425–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Styczkiewicz M, et al. Ascending aortic, but not brachial blood pressure-derived indices are related to coronary atherosclerosis. Atherosclerosis. 2004;176:151–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60:534–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Sundström J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bangalore S, Messerli FH, Franklin SS, Mancia G, Champion A, Pepine CJ. Pulse pressure and risk of cardiovascular outcomes in patients with hypertension and coronary artery disease: an INternational VErapamil SR-trandolapril STudy (INVEST) analysis. Eur Heart J. 2009;30:1395–401.PubMedCrossRefGoogle Scholar
  15. 15.
    Protogerou AD, Safar ME, Iaria P, Safar H, Le Dudal K, Filipovsky J, et al. Diastolic blood pressure and mortality in the elderly with cardiovascular disease. Hypertension. 2007;50:172–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Bangalore S, Messerli FH, Wun CC, Zuckerman AL, DeMicco D, Kostis JB, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J. 2010;31:2897–908.PubMedCrossRefGoogle Scholar
  17. 17.
    Denardo SJ, Messerli FH, Gaxiola E, Aranda Jr JM, Cooper-Dehoff RM, Handberg EM, et al. Coronary revascularization strategy and outcomes according to blood pressure (from the International Verapamil SR-Trandolapril Study [INVEST]). Am J Cardiol. 2010;106:498–503.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Schillaci G, Di Luzio S, Coluccini M, Gonzini L, Porcu M, Pozzar F, et al. A low pulse pressure is an independent predictor of mortality in heart failure: data from a large nationwide cardiology database (IN-CHF Registry). Ital Heart J. 2004;5:892–8.PubMedGoogle Scholar
  19. 19.
    Westerhof N, O’Rourke MF. Haemodynamic basis for the development of the left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens. 1995;13:943–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Weber T, Auer J, Lamm G, O’Rourke MF, Eber B. Arterial stiffness, central blood pressure, and wave reflections in cardiomyopathy – implications for risk stratification. J Card Fail. 2007;13:353–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Hurthle K. Ueber den Ursprungsort der sekundaren Wellen der Pulscurve. Arch f d ges Physiol. 1890;47:17.CrossRefGoogle Scholar
  22. 22.
    Frank O. Der Puls in den Arterien Ztschr. f Biol. 1905;46:441–53.Google Scholar
  23. 23.
    Wood EH, Fuller J, Clagett OT. Intraluminal pressures recorded simultaneously from different arteries in man (abstract). Am J Physiol. 1951;167:838.Google Scholar
  24. 24.
    O’Rourke MF. Arterial stiffness in hypertension. 1st ed. Amsterdam: Elsevier; 2006. p. 3–20.Google Scholar
  25. 25.
    Safar ME, Blacher J, Protogerou A, Achimastos A. Arterial stiffness and central hemodynamics in treated hypertensive subjects according to brachial BP classification. J Hypertens. 2008;26:130–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Temmar M, Jankowski P, Peltier M, Mouquet V, Dębicka-Dąbrowska D, Hamida F, et al. Intraaortic pulse pressure amplification in subjects at high coronary risk. Hypertension. 2010;55:327–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54:375–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi CU, Kim EJ, Kim SH, Shin SY, Choi UJ, Kim JW, et al. Differing effects of aging on central and peripheral blood pressures and pulse wave velocity: a direct intraarterial study. J Hypertens. 2010;28:1252–60.PubMedGoogle Scholar
  29. 29.
    Guray Y, Guray U, Altay H, Cay S, Yilmaz MB, Kisacik HL, et al. Aortic pulse pressure and aortic pulsatility are associated with angiographic coronary artery disease in women. Blood Press. 2005;14:293–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Wykretowicz A, Metzler L, Milewska A, Balinski M, Rutkowska A, Adamska K, et al. Noninvasively assessed pulsatility of ascending aortic pressure waveform is associated with the presence of coronary artery narrowing. Heart Vessels. 2008;23:16–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Safar ME, Blacher J, Pannier B, Guerin A, Marchais S, Guyonvarc’h P, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27:461–7.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Lu TM, Hsu NW, Chen YH, Lee WS, Wu CC, Ding YA, et al. Pulsatility of ascending aorta and restenosis after coronary angioplasty in patients >60 years of age with stable angina pectoris. Am J Cardiol. 2001;88:964–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Jankowski P, Kawecka-Jaszcz K, Bryniarski L, Czarnecka D, Zabojszcz M, Styczkiewicz M. Pulse pressure as a predictor of restenosis after percutaneous transluminal coronary angioplasty. Przegl Lek. 2001;58:1025–8.PubMedGoogle Scholar
  38. 38.
    Wentzel JJ, Kloet J, Andhyiswara I, Oomen JAF, Schuurbiers JCH, de Smet BJGL, et al. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation. 2001;104:91–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Kozuma K, Costa MA, Sabate M, Slager CJ, Boersma E, Kay IP, et al. Relationship between tensile stress and plaque growth after balloon angioplasty treated with and without intracoronary betabrachytherapy. Eur Heart J. 2000;24:2063–70.CrossRefGoogle Scholar
  40. 40.
    Philippe F, Chemaly E, Blacher J, Mourad JJ, Dibie A, Larrazet F, et al. Aortic pulse pressure and extent of coronary artery disease in percutaneous transluminal coronary angioplasty candidates. Am J Hypertens. 2002;15:672–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Perez G, et al. Relation between ascending aortic pressures and outcomes in patients with angiographically demonstrated coronary artery disease. Am J Cardiol. 2005;96:645–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Vito RP, Dixon SA. Blood vessel constitutive models: 1995–2002. Annu Rev Biomed Eng. 2003;5:413–39.PubMedCrossRefGoogle Scholar
  43. 43.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Choi CU, Park EB, Suh SY, Kim JW, Kim EJ, Rha SW, et al. Impact of aortic stiffness on cardiovascular disease in patients with chest pain. Am J Hypertens. 2007;20:1163–9.PubMedGoogle Scholar
  45. 45.
    Leung MCH, Meredith IT, Cameron JD. Aortic stiffness affects the coronary blood flow response to percutaneous coronary intervention. Am J Physiol Heart Circ Physiol. 2006;290:H624–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45:1050–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Safar ME, Blacher J, Jankowski P. Arterial stiffness, pulse pressure, and cardiovascular disease-is it possible to break the vicious circle? Atherosclerosis. 2011;218:263–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Guray U, Guray Y, Yilmaz MB, Caldir V, Cay S, Sasmaz H, et al. Aortic pulse pressure and aortic pulsatility in patients with coronary slow flow. Cardiology. 2007;107:233–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Ishikawa T, Hashimoto J, Morito RH, Hanazawa T, Aikawa T, Hara A, et al. Association of microalbuminuria with brachial-ankle pulse wave velocity: the Ohasama study. Am J Hypertens. 2008;21:413–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Fuster V, Lewis A. Conner memorial lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 1994;90:2126–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Thacher TN, Silacci P, Stergiopulos N, da Silva RF. Autonomous effects of shear stress and cyclic circumferential stretch regarding endothelial dysfunction and oxidative stress: an ex vivo arterial model. J Vasc Res. 2009;47:336–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D. Ascending aortic blood pressure waveform is related to coronary atherosclerosis in hypertensive as well as in normotensive subjects. Blood Press. 2007;16:246–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Khoueiry G, Azab B, Torbey E, Rafeh NA, Atallah JP, Ahern K, et al. Aortic pulse pressure is associated with the localization of coronary artery disease based on coronary flow lateralization. Am J Hypertens. 2012;25:1055–63.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Tropea BI, Schwarzacher SP, Chang A, Asvar C, Huie P, Sibley RK, et al. Reduction of aortic wall motion inhibits hypertension-mediated experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:2127–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension. 2010;55:799–805.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Kiefer CR, McKenney JB, Trainor JF, Snyder LM. Pulse pressure-driven neutral lipid accumulation and correlative proinflammatory markers of accelerated atherogenesis. Atherosclerosis. 2005;183:17–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Sakamoto H, Aikawa M, Hill CC, Weiss D, Taylor WR, Libby P, et al. Biomechanical strain induces class a scavenger receptor expression in human monocyte/macrophages and THP-1 cells. A potential mechanism of increased atherosclerosis in hypertension. Circulation. 2001;104:109–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschluz KT. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem. 2001;276:13847–51.PubMedGoogle Scholar
  60. 60.
    Cheng JJ, Chao YJ, Wung BS, Wang DL. Cyclic strain-induced plasminogen activator inhibitor-1 (PAI-1) release from endothelial cells involves reactive oxygen species. Biochem Biophys Res Commun. 1996;225:100–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Huang G, Luo C, Gu X, Wu Z, Wang Z, Du Z, et al. Mechanical strain induces expression of C-reactive protein in human blood vessels. J Pharmacol Exp Ther. 2009;330:206–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Selwaness M, van den Bouwhuijsen QJA, Verwoert GC, Dehghan A, Mattace-Raso FUS, Vernooij M, et al. Blood pressure parameters and carotid intraplaque hemorrhage as measured by magnetic resonance imaging The Rotterdam Study. Hypertension. 2013;61:76–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Kopeć G, Podolec P, Podolec J, Rubiś P, Zmudka K, Tracz W. Atherosclerosis progression affects the relationship between endothelial function and aortic stiffness. Atherosclerosis. 2009;204:250–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Collier SR, Kanaley JA, Carhart Jr R, Frechette V, Tobin MM, Hall AK, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Guimarães GV, Ciolac EG, Carvalho VO, D’Avila VM, Bortolotto LA, Bocchi EA. Effects of continuous vs interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res. 2010;33:627–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Avolio AP, Clyde KM, Beard TC, Cooke HM, Ho KK, O’Rourke MF. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6:166–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Kingwell BA, Cameron JD. Nonpharmacological treatment for increased arterial stiffness and altered wave reflections. In: Safar ME, O’Rourke MF, editors. Arterial stiffness in hypertension. New York: Elsevier; 2006.Google Scholar
  68. 68.
    Yamada T, Strong JP, Ishii T, Ueno T, Koyama M, Wagayama H, et al. Atherosclerosis and omega-3 fatty acids in the populations of a fishing village and a farming village in Japan. Atherosclerosis. 2000;153:469–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Hamazaki T, Urakaze M, Sawazaki S, Yamazaki K, Taki H, Yano S. Comparison of pulse wave velocity of the aorta between inhabitants of fishing and farming villages in Japan. Atherosclerosis. 1988;73:157–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Jankowski P, Safar ME, Kawecka-Jaszcz K. How drugs influencing central blood pressure prevent atherosclerosis complications? Curr Pharm Biotechnol. 2012;13:2449–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50:154–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Kotecha D, New G, Collins P, Eccleston D, Krum H, Pepper J, et al. Radial artery pulse wave analysis for non-invasive assessment of coronary artery disease. Int J Cardiol. 2013;167:917–24.PubMedCrossRefGoogle Scholar
  73. 73.
    Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Nishijima T, Nakayama Y, Tsumura K, Yamashita N, Yoshimaru K, Ueda H, et al. Pulsatility of ascending aortic blood pressure waveform is associated with an increased risk of coronary heart disease. Am J Hypertens. 2001;14:469–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Nakayama Y, Hayashi T, Yoshimaru K, Tsumura K, Ueda H. Low fractional diastolic pressure in the ascending aorta increased the risk of coronary heart disease. J Hum Hypertens. 2002;16:837–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Danchin N, Benetos A, Lopez-Sublet M, Demicheli T, Safar M, Mourad JJ. Aortic pulse pressure is related to the presence and extent of coronary artery disease in men undergoing diagnostic coronary angiography: a multicenter study. Am J Hypertens. 2004;17:129–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Jankowski P, Kawecka-Jaszcz K, Bryniarski L, Czarnecka D, Brzozowska-Kiszka M, Pośnik-Urbańska A, et al. Fractional diastolic and systolic pressure in the ascending aorta are related to the extent of coronary artery disease. Am J Hypertens. 2004;17:641–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Bryniarski L. Ascending aortic blood pressure waveform may be related to the risk of coronary artery disease in women, but not in men. J Hum Hypertens. 2004;18:643–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Pośnik-Urbańska A, Styczkiewicz K. Ascending aortic blood pressure-derived indices are not correlated with the extent of coronary artery disease in patients with impaired left ventricular function. Atherosclerosis. 2006;184:370–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Mourad JJ, Danchin N, Rudnichi A, Lopez-Sublet M, Le Jeune S, Safar ME. Aortic pulse pressure and atherosclerotic structural alterations of coronary arteries. J Hum Hypertens. 2010;24:51–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Pařenica J, Kala P, Jarkovský J, Poloczek M, Boček O, Jeřábek P, et al. Relationship between high aortic pulse pressure and extension of coronary atherosclerosis in males. Physiol Res. 2011;60:47–53.PubMedGoogle Scholar
  82. 82.
    Ege MR, Zorlu A, Yilmaz MB, Acikgoz S, Tandogan I, Cinar Z. Central diastolic blood pressure is associated with the degree of coronary collateral development. Angiology. 2013;64:546–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Piotr Jankowski
    • 1
    Email author
  • Jacques Blacher
    • 2
  • Thomas Weber
    • 3
    • 4
  1. 1.I Department of Cardiology and Hypertension, Institute of CardiologyJagiellonian University Medical CollegeKrakówPoland
  2. 2.Department of MedicineParis Descartes University, Assistance Publique des Hôpitaux de Paris, Hôtel-Dieu Hospital, Diagnosis and Therapeutics CenterParisFrance
  3. 3.Department of CardiologyKlinikum Wels-GrieskirchenWelsAustria
  4. 4.Paracelsus Medical UniversitySalzburgAustria

Personalised recommendations