Advertisement

The Relationship Between Aortic Stiffness, Microvascular Disease in the Brain and Cognitive Decline: Insights into the Emerging Epidemic of Alzheimer’s Disease

  • Angelo Scuteri
  • Jonathan Stone
  • Michael F. O’RourkeEmail author
Chapter

Abstract

The leading current hypothesis of age-related dementia (Alzheimer’s disease) considers this a consequence of the beta-amyloid peptide or of the intracellular skeletal protein tau, causing breakdown of the cerebral capillary bed. External trauma to the head in boxing and football is known to induce similar dementia ( dementia pugilistica, chronic traumatic encephalopathy), usually showing onset years after the individual’s retirement from active sport. At autopsy in dementia pugilistica, haemorrhage from cerebral vessels is prominent. This presentation reviews evidence that age-related dementia (ARD) is caused by internal trauma to vascular bed of the brain, by the pulse itself. Between the ages of 50 and 80 years, the heart beats ~109 times and, because of the low impedance of the cerebral circulation, each pulse penetrates to the cerebral veins. Further, the stiffness of the walls of the aorta and great arteries increases with age; and the amplitude of the pressure pulse in cerebral vessels (a measure of the cerebral pulse intensity) increases several fold. This pounding of cerebral vessels by the pulse induces (we argue) haemorrhages from cerebral vessels. When the vessel that haemorrhages is large, the patient may display symptoms of stroke and any resulting dementia is designated ‘vascular’. When the vessels that haemorrhage are small (capillaries), the patient may experience no acute symptoms; but the cumulative effect of many such haemorrhages becomes evident as loss of memory and of cognition. The pathologies which Alzheimer described in the demented brain (senile plaques, neurofibrillary tangles and inflammation) occur, we argue, as a result of haemorrhage. The age at which dementia becomes evident is determined by the fragility of cerebral vessels, which may vary between individuals with genetic and lifestyle factors. The hypothesis accounts better than previous proposals for the greatest risk factor for dementia – age.

Keywords

Wave reflection Dementia Augmentation index Pulse wave analysis 

Notes

References

  1. 1.
    Alzeheimer A. Uber eine eigenartige Erkrankung der Himrinde. Allgemeine Zeitschrift Psychiatrie Psychisch-Gerichtliche Medizin. 1907;64:146–8.Google Scholar
  2. 2.
    Alzheimer A. Uber eigenartige Krankheitsfalle des spateren Alters. Zbl ges Neurol Psychiat. 1911;4:356–85.CrossRefGoogle Scholar
  3. 3.
    Osler W. The principles and practice of medicine. 6th ed. New York: Appleton; 1906. p. 848–52.Google Scholar
  4. 4.
    Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. London: Arnold Hodder; 2011. p. 411–6, 499–6.Google Scholar
  5. 5.
    Kraepelin E. Senile and pre-senile dementias. In: Psychiatrie: ein Lehrbuch fur Studierende und Arzte. Leipzig: Johann Ambrosius Barth; 1910. p. 553–632.Google Scholar
  6. 6.
    Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Bowler JV. Modern concept of vascular or cognitive dementia. Br Med Bull. 2007;83:291–305.PubMedCrossRefGoogle Scholar
  8. 8.
    Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature. 1987;325:733–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Glenner GG, Wong CW. Alzheimer’s Disease: medical report on the purification and characterisation of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Ropper M. Two centuries of neurology and psychiatry. N Engl J Med. 2012;367:58–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for health care professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2671–713.CrossRefGoogle Scholar
  12. 12.
    Fischer LCM. Lacunar strokes and infarcts: a review. Neurology. 1982;32:871–6.CrossRefGoogle Scholar
  13. 13.
    Pickering G. High blood pressure. London: Churchill; 1968.Google Scholar
  14. 14.
    Russell RW. How does blood pressure cause stroke? Lancet. 1975;2:1283–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenberg SM. Small Vessels, big problems. N Engl J Med. 2006;354:1451–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Byrom F. The hypertensive vascular crisis – an experimental study. London: Heineman; 1969.Google Scholar
  17. 17.
    Verooij M, Ikram MA, Tanghe HL, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357:1281–8.CrossRefGoogle Scholar
  18. 18.
    O’Rourke MF, Safar ME. Hemodynamic basis for the relationship between aortic stiffening and microvascular disease in brain and kidney: implications for treatment. Hypertension. 2005;46:200–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Henry-Feugeas MC, de Marco G, Peretti II, et al. Age-related cerebral white matter changes and pulse wave encephalopathy: observations with three dimensional MRI. Magn Reson Imaging. 2005;23:929–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Bateman GA, Levi CR, Schofield P, et al. Quantitative measurement of cerebral hemodynamics in early vascular dementia and Alzheimer’s disease. J Clin Neurosci. 2006;13:563–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Henry-Feugeas MC, Koskas P. Cerebral vascular aging: extending the concept of pulse wave encephalopathy through capillaries to the cerebral veins. Curr Aging Sci. 2012;5:157–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Fry D. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22:165–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Fry D. Certain histological and chemical response of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ Res. 1969;24:93–108.PubMedCrossRefGoogle Scholar
  24. 24.
    Cullen KM, Kocsi Z, Stone J. Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging. 2006;27:1786–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Cullen KM, Kocsi Z, Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab. 2005;25:1656–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Stone J. What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med Hypotheses. 2008;71:347–59.PubMedCrossRefGoogle Scholar
  27. 27.
    Stone J, O’Rourke MF. ASMR 2013 abstract. The mechanical cause of age-related dementia: the brain is destroyed by the pulse.Google Scholar
  28. 28.
    Herbert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer’s disease in the US population. Arch Neurol. 2003;60:1119–22.CrossRefGoogle Scholar
  29. 29.
    Osler W. “The fixed period”. In: Hinohara S, Niki H, editors. Osler’s way of life. Durham: Duke University Press; 2001. p. 287–304.Google Scholar
  30. 30.
    Thompson PH, Hobbs MST, Martin CA. The rise and fall of ischemic heart disease in Australia. Aust N Z J Med. 1988;18:327–37.PubMedCrossRefGoogle Scholar
  31. 31.
    Levy D, Thom T. Death rates from coronary disease – progress and a puzzling paradox (editorial). N Engl J Med. 1998;339:915–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Levy D, Brink S. A change in heart. New York: Vintage; 2005.Google Scholar
  33. 33.
    Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence and survival with heart failure. N Engl J Med. 2002;347:1397–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Redfield MM. Heart failure – an epidemic of uncertain proportions. N Engl J Med. 2002;347:1442–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Redfield MM, Jacobsen SJ, Burnett JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.PubMedCrossRefGoogle Scholar
  37. 37.
    Systolic Hypertension in Elderly Program Cooperative Research Group (SHEP). Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64.CrossRefGoogle Scholar
  38. 38.
    Katz AM. Cardiomyopathy of overload. N Engl J Med. 1990;322:100–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Mackenzie J. The study of the pulse: arterial, venous and hepatic, and of the movement of the heart. Edinburgh: Young J Pentland; 1902.Google Scholar
  40. 40.
    Larson EB, Yaffe K, Langa K, et al. New insights into the dementia epidemic. N Engl J Med. 2013;369:2275–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Scuteri A, Lakatta E. Bringing prevention in geriatrics evidence from cardiovascular medicine supporting the new challenge. Exp Gerontol. 2013;48:64–8.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor MG. The elastic properties of arteries in relation to the physiological functioning of the arterial system. Gastroenterology. 1967;52:358–63.PubMedGoogle Scholar
  44. 44.
    Milnor WR. Hemodynamics. 2nd ed. Baltimore: Williams & Wilkins; 1989.Google Scholar
  45. 45.
    O’Rourke MF. Commentary on: aortic wavelength as a determinant of the relationship between heart rate and body size in mammals. Am J Physiol. 1981;240:R393–5.PubMedGoogle Scholar
  46. 46.
    Redheuil A, Yu W-C, Wu CO, et al. Reduced ascending aortic strain and distensilibity: earlier manifestations of vascular aging in humans. Hypertension. 2010;55:319–26.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Scuteri A, Nilsson PM, Tzourio C, Redon J, Laurent S. Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens. 2011;29:1469–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirata K, Yaginuma T, O’Rourke MF, Kawakami M. Age-related change in the carotid artery flow and pressure pulses implications to cerebral microvascular disease. Stroke. 2006;37:2552–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Hirata K, O’Rourke MF. Effect of nitrate on the carotid late systolic flow augmentation – a new strategy against stroke. J Hypertens. 2007;25 Suppl 2:S336–7.Google Scholar
  50. 50.
    Hirata K, O’Rourke M, Momomura S. Flow augmentation index as a risk factor for silent lacunar infarction. J Am Coll Cardiol. 2008;51(Suppl A):A303.Google Scholar
  51. 51.
    Xu TY, Staessen JA, Wei FF, et al. Blood flow pattern in the middle cerebral artery in relation to indices of arterial stiffness in the systemic circulation. Am J Hypertens. 2012;25:319–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Boutouyrie P, Laurent S, Benetos A, et al. Opposing effects of aging on distal and proximal larger arteries in hypertensives. J Hypertens. 1992;10 Suppl 6:S87–91.Google Scholar
  53. 53.
    Kim MO, Li Y, Wei F, Wang J, O’Rourke M, Avolio A. Influence of wave reflection and lower body arterial properties on cerebral perfusion in apparently normal humans. J Hypertens. 2013;31(e-Suppl A):e23.Google Scholar
  54. 54.
    Salloway S, Sperwing R, Fox N, et al. Two phase 3 trials of Bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:322–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of Solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Hashimoto J, Ito S. Central pulse pressure and aortic stiffness determine renal hemodynamics: Pathophysiological implication of micro albuminuria in hypertension. Hypertension. 2011;58:839–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.PubMedCrossRefGoogle Scholar
  58. 58.
    Nilsson PM, Boutouyrie P, Cunha P, Kotsis V, Narkiewicz K, Parati G, Rietzschel E, Scuteri A, Laurent S. Early vascular aging in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens. 2013;31:1517–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I. Struijker-Boudier H; European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.PubMedCrossRefGoogle Scholar
  60. 60.
    Esiri MM, Wilcock GK, Morris JH. Neuropathological assessment of the lesions of significance in vascular dementia. J Neurol Neurosurg Psychiatry. 1997;63:749–53.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Garrett KD, Browndyke JN, Whelihan W, Paul RH, DiCarlo M, Moser DJ, Cohen RA, Ott BR. The neuropsychological profile of vascular cognitive impairment–no dementia: Comparisons to patients at risk for cerebrovascular disease and vascular dementia. Arch Clin Neuropsychol. 2004;19:745–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Nyenhuis DL, Gorelick PB, Geenen EJ, Smith CA, Gencheva E, Freels S, DeToledo-Morrell L. The pattern of neuropsychological deficits in vascular cognitive impairment-no dementia (vascular CIND). Clin Neuropsychol. 2004;18:41–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Troyer AK, Moscovitch M, Winocur G, Alexander MP, Stuss D. Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia. 1998;36:499–504.PubMedCrossRefGoogle Scholar
  64. 64.
    Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Wallin A, Dichgans M, Marler JR, Leblanc GG. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37:2220–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Carew TG, Lamar M, Cloud BS, Grossman M, Libon DJ. Impairment in category fluency in ischemic vascular dementia. Neuropsychology. 1997;11:400–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Lamar MPC, Davis KL, Kaplan E, Libon DJ. Capacity to maintain mental set in dementia. Neuropsychologia. 2002;40:435–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Wechsler D. WAIS-III administration and scoring manual. New York: The Psychological Corporation; 1997.Google Scholar
  68. 68.
    Kaplan E, Fein D, Morris R, Delis D. The WAIS-Rr as a neuropsychological instrument. San Antonio: Psychological Corporation; 1991.Google Scholar
  69. 69.
    Dufouil C, Chalmers J, Coskun O, et al. Effects of blood pressure lowering on cerebral white matter intensitities in patients with stroke. The PROGRESS Magnetic Resonance Imaging Substudy. Circulation. 2005;112:1644–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee TH. Eugene Braunwald and the rise of modern medicine. Cambridge: Harvard; 2013.CrossRefGoogle Scholar
  71. 71.
    Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, Pan WH, Chen CH. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 2013;62:1780–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Scuteri A, Tesauro M, Guglini L, Lauro D, Fini M, de Daniele N. Aortic stiffness and hypotension episodes are associated with impaired cognitive function in older subjects with subjective complements of memory loss. Int J Cardiol. 2013;169:371–7.PubMedCrossRefGoogle Scholar
  73. 73.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;18:2013. doi: 10.1001/jama.2013.284427.Google Scholar
  74. 74.
    Bauchner H, Fontanarosa PB, Golub RM. Updated guidelines for management of high blood pressure: recommendations, review, and responsibility. JAMA. 2013. doi: 10.1001/jama.2013.284432.Google Scholar
  75. 75.
    O’Rourke MF, Safar ME, Dzau V. The cardiovascular continuum extended: aging effects on the aorta and microvasculature. Vasc Med. 2010;15:461–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Angelo Scuteri
    • 1
  • Jonathan Stone
    • 2
  • Michael F. O’Rourke
    • 3
    Email author
  1. 1.School of Geriatrics – Faculty of MedicineUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of PhysiologyBosch Institute, University of Sydney F 13SydneyAustralia
  3. 3.Department of Cardiovascular and HypertensionSt Vincent’s Clinic, University of New South Wales, Victor Chang Cardiac Research InstituteDarlinghurst, SydneyAustralia

Personalised recommendations