Skip to main content

Large Arteries, Microcirculation, and Mechanisms of Hypertension

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Although the macro- and microcirculation have different embryological origins a constant match in their mechanical behavior is essential for an optimal function of the cardiovascular system. Extrinsic neurohormonal control systems contribute to this match. In addition, blood pressure transfers energy, mechanical signals, and metabolic factors independently of these neurohormonal control mechanisms. The plasticity of vascular structure provides a long-term control mechanism of blood pressure throughout the vascular tree. Hypertension is characterized by vascular structural changes that cause increased arterial stiffness and resistance to flow. This chapter discusses the major structural changes in the vascular tree in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Safar ME, Struijker-Boudier HA. Cross-talk between macro-and microcirculation. Acta Physiol (Oxf). 2010;198:417–30.

    Article  CAS  Google Scholar 

  2. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–40.

    Article  CAS  PubMed  Google Scholar 

  3. Guyton AC. Arterial pressure and hypertension. In: Guyton AC, editor. Circulatory physiology III. Saunders: Philadelphia; 1980. p. 30–165.

    Google Scholar 

  4. Gilbert SF. Developmental biology. 9th ed. Sunderland: Sinnauer Associates; 2010.

    Google Scholar 

  5. Bendeck MP, Langille BL. Changes in blood flow distribution during the perinatal period in fetal sheep and lambs. Can J Physiol Pharmacol. 1992;70:1576–82.

    Article  CAS  PubMed  Google Scholar 

  6. Martyn CN, Greenwald S. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;350:953–5.

    Article  CAS  PubMed  Google Scholar 

  7. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Article  CAS  PubMed  Google Scholar 

  8. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Thoma R. Untersuchingen über die Histogenesis und Histomechanik das gefassystem. Stuttgart: Enke; 1893.

    Google Scholar 

  10. Murray CD. The physiological principle of minimum work. 1 The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A. 1926;12:207–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Levy BI, Schiffrin EL, Mourad J, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HAJ. Impaired tissue perfusion. Circulation. 2008;118:968–76.

    Article  PubMed  Google Scholar 

  12. Le Noble FAC, Stassen FRM, Hacking WJG, Struijker-Boudier HAJ. Angiogenesis and hypertension. J Hypertens. 1998;16:1563–72.

    Article  PubMed  Google Scholar 

  13. Zamir M. Shear forces and blood vessel radii in the cardiovascular system. J Gen Physiol. 1977;69:449–61.

    Article  CAS  PubMed  Google Scholar 

  14. Koller A, Kaley G. Shear stress dependent regulation of vascular resistance in health and disease: role of endothelium. Endothelium. 1996;4:247–72.

    Article  CAS  Google Scholar 

  15. Hackeng WJG, Van Bavel E, Spaan JAE. Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol. 1996;270:H364–75.

    Google Scholar 

  16. Skalak TC, Price RJ. The role of mechanical stresses in microvascular remodeling. Microcirculation. 1996;3:143–65.

    Article  CAS  PubMed  Google Scholar 

  17. Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol. 2011;110:49–55.

    Article  PubMed  Google Scholar 

  18. Safar ME, Levy BI, Struijker-Boudier HA. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107:2864–9.

    Article  PubMed  Google Scholar 

  19. Nichols WW, O’Rourke M, Vlachopoulos C. Mc Donald’s blood flow in arteries. 6th ed. Boca Raton: CRC Press; 2011.

    Google Scholar 

  20. Mitchell G, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E, Vasa RS, Levy D, Benjamin EJ. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness. Circulation. 2005;112:3722–8.

    Article  PubMed  Google Scholar 

  21. Cheung N, Sharret AR, Klein R, Criqui MH, Islam FMA, Macura KJ, Cotch MF, Klein BEK, Wong TY. Aortic distensibility and retinal arteriolar narrowing. Hypertension. 2007;50:617–22.

    Article  CAS  PubMed  Google Scholar 

  22. Liao D, Wong TY, Klein R, Joens D, Hubbard L, Sharret AR. Relationship between carotid artery stiffness and retinal arteriolar narrowing in healthy middle-aged persons. Stroke. 2004;35(4):837–42.

    Article  PubMed  Google Scholar 

  23. Ott C, Raff U, Harazny JM, Michelson G, Schmieder RE. Central pulse pressure is an independent determinant of vascular remodeling in the retinal circulation. Hypertension. 2013;61:1340–5.

    Article  CAS  PubMed  Google Scholar 

  24. Muiesan ML, Salvetti M, Rizzoni D, Oaini A, Agabati-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Gavazii A, Porteri E, De Ciuceis C, Agabiti-Rosei E. Pulsatile hemodynamics and microcirculation. Hypertension. 2013;61:130–6.

    Article  CAS  PubMed  Google Scholar 

  25. Cohuet G, Struijker-Boudier HAJ. Mechanism of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther. 2006;111:81–98.

    Article  CAS  PubMed  Google Scholar 

  26. Boutouyrie P, Laurent S, Briet M. Importance of arterial stiffness as cardiovascular risk factor for future development of new type drugs. Fundam Clin Pharmacol. 2008;22:241–6.

    Article  CAS  PubMed  Google Scholar 

  27. Rizzoni D, Muiesan ML, Porteri E, De Ciuceis C, Boari GEM, Salvetti M, Paini A, Rosei EA. Interrelationships between macro and microvascular structure and function. Artery Res. 2010;4:114–17.

    Article  Google Scholar 

  28. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, On behalf of the European network for Non-invasive Investigation of Large Arteries, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  29. Agabiti-Rosei E, Mancia G, O’rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50:154–60.

    Article  CAS  PubMed  Google Scholar 

  30. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.

    Article  CAS  PubMed  Google Scholar 

  31. Struijker-Boudier HAJ, van Essen H, Fazzi G, De Mey JG, Qiu HY, Lévy BI. Disproportional arterial hypertrophy in hypertensive mRen-2 transgenic rats. Hypertension. 1996;28:779–84.

    Article  CAS  PubMed  Google Scholar 

  32. Heerkens EH, Shaw L, Ryding A, Brooker G, Mullins JJ, Austin C, et al. AlphaV integrins are necessary for eutrophic inward remodeling of small arteries in hypertension. Hypertension. 2006;47:281–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bakker EN, Buus CL, Spaan JA, Perree E, Ganga A, Rolf TM, et al. Small artery remodeling depends on tissue-type transglutaminase. Circ Res. 2005;96:119–26.

    Article  CAS  PubMed  Google Scholar 

  34. Bakker EN, Pistea A, Van Bavel E. Transglutaminases in vascular biology: relevance for vascular remodeling and atherosclerosis. J Vasc Res. 2008;45:271–8.

    Article  CAS  PubMed  Google Scholar 

  35. Struijker-Boudier HAJ, Heijnen BF, Liu YP, Staessen JA. Phenotyping the microcirculation. Hypertension. 2012;60:523–7.

    Article  CAS  PubMed  Google Scholar 

  36. Noon JP, Walker BR, Webb DJ, et al. Impaired microvascular dilation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997;99:1873–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kurniawan ED, Cheung N, Cheung CY, Tay WT, Saw SM, Wong TY. Elevated blood pressure is associated with rarefaction of the retinal vasculature in children. Invest Ophthalmol Vis Sci. 2012;53:470–4.

    Article  PubMed  Google Scholar 

  38. Tran ED, Schmid-Schönbein GW. An in-vivo analysis of capillary stasis and endothelial apoptosis in a model of hypertension. Microcirculation. 2007;14:793–804.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi N, DeLano FA, Schmid-Schönbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rat. Arterioscler Thromb Vasc Biol. 2005;25:2114–21.

    Article  CAS  PubMed  Google Scholar 

  40. Vogt CJ, Schmid-Schönbein GW. Microvascular endothelial cell death and rarefaction in the glucocorticoid-induced hypertensive rat. Microcirculation. 2001;8:129–39.

    Article  CAS  PubMed  Google Scholar 

  41. Wang B, Li BW, Li HW, Li Al, Yuan XC, Wang Q, Xiu RJ. Enhanced matrix metalloproteinases-2 activates endothelial hyperpermeability, apoptosis and vascular rarefaction in spontaneously hypertensive rat. Clin Hemorheol Microcirc. 2013. doi:10.3233/CH-131713.

  42. Mourad JJ, Levy BI. Mechanisms of antiangiogenic-induced arterial hypertension. Curr Hypertens Rep. 2011;13:289–93.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W, le Noble F. MiR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension. 2013;62:592–8.

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes T, Magalhāes, Roque FR, Philips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors role of microRNAs-16, -21, and -126. Hypertension. 2012;59:513–20.

    Article  CAS  PubMed  Google Scholar 

  45. Heggermont WA, Heymans S. MicroRNAs are involved in end-organ damage during hypertension. Hypertension. 2012;60:1088–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. J. Struijker-Boudier PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Struijker-Boudier, H.A.J. (2014). Large Arteries, Microcirculation, and Mechanisms of Hypertension. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics