Salt and Multiorgan Damage in Hypertension: Vascular Stiffening and Cardiorenal Structural Dysfunction Responses

  • Edward D. FrohlichEmail author


This chapter focuses on some of the new factors adversely affecting the target organs of hypertensive disease resulting from long-term dietary salt excess including the local renin-angiotensin systems in the arteries, heart, and kidneys. The data presented suggests that the stimulation of these cardiovascular and renal sites is responsible for their damage that alters the structure and function of these organs through other biological systems. These actions may be mediated by the expression of lysyl oxidase formation, oxidative stress, and inflammation that may account for the development of organ fibrosis including collagen and its cross-linking which reduces vascular elasticity and cardiovascular and/or renal stiffening. These latter concepts permit reference to mosaic of multifactorial factors of disease, the concept of which was introduced by Irvine Page. The reader can appreciate how the generation of simple questions in earlier investigative processes leads to more complex problems which, in turn, can provide important clinical answers that continue to stimulate an active investigative scientific medical career.


Salt Heart Large arteries Kidneys Heart failure Renal failure Local renin-angiotensin systems Reactive oxygen species Inflammation Fibrosis 


  1. 1.
    Ambard L, Beaujard E. Causes de l’hypertension arterielle. Arch Gen Med. 1904;1:529.Google Scholar
  2. 2.
    Kurlansky M. SALT: a world history. New York: Penguin Books; 2002. p. 484.Google Scholar
  3. 3.
    Frohlich ED, Messerli FH. Sodium and hypertension. In: Papper S, editor. Sodium, Cations of biologic significance, vol. 2. 2nd ed. Boca Raton: CRC Press; 1982. p. 144–74.Google Scholar
  4. 4.
    Frohlich ED. The salt conundrum: a hypothesis. Hypertension. 2007;50:161–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Frohlich ED. Are local renin-angiotensin systems the focal points for understanding salt sensitivity in hypertension? In: Frohlich ED, Re RN, editors. The local cardiac renin-angiotensin-aldosterone system. 2nd ed. Federal Republic of Germany: Springer; 2009. p. 1–6.CrossRefGoogle Scholar
  6. 6.
    Ferder LE. Renin angiotensin systems and aging. In: De Mello WC, Frohlich ED, editors. Renin angiotensin system and cardiovascular disease. New York: Humana Press; a part of Springer Science & Business Media, LLC; 2009. p. 231–43.CrossRefGoogle Scholar
  7. 7.
    Frohlich ED, Susic D. Sodium and its multiorgan targets. Circulation. 2011;124:1882–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Rule AD, Hatem A, Conell LD, Taler SJ, Cosla FG, Kremers WK, Texter SC, Stegall MD. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med. 2010;152:561–7.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Seventh Report of the Joint National Committee on Prevention. Detection, evaluation, and treatment of high blood pressure (JNC-7). JAMA. 2003;289:2560–72.CrossRefGoogle Scholar
  10. 10.
    International Society of Hypertension Writing Group. International Society of Hypertension (ISH), statement on blood pressure lowering and stroke prevention. J Hypertens. 2003;21:651–63.CrossRefGoogle Scholar
  11. 11.
    Safar ME, Asmar RG, Benetos A, London GM, Levy BL. Sodium, large arteries and diuretic compounds in hypertension. J Hypertens. 1992;10:S133–6.CrossRefGoogle Scholar
  12. 12.
    Safar ME, Thuilliez C, Richard V, Benetos A. Pressure independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res. 2000;46:269–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Frohlich ED, Susic D. Pressure overload. Heart Fail Clin. 2012;8:21–32.PubMedCrossRefGoogle Scholar
  14. 14.
    UK Food Standards Agency. Website. Accessed 18 June 2007.
  15. 15.
    Appel LJ, Frohlich ED, Hall JE, Pearson TA, Sacco RI, Seals DR, Sacks FM, Smith Jr SC, Vafiadis DK, Van Horn LV. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation. 2011;123:1138–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Kotchen TA, Cowley Jr AW, Frohlich ED. Salt in health and disease: a delicate balance. N Engl J Med. 2013;368:1229–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Smirk FH, Hall WH. Inherited hypertension in rats. Nature. 1958;182:717–28.CrossRefGoogle Scholar
  18. 18.
    Trippodo NC, Frohlich ED. Controversies in cardiovascular research: similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48:309–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Graham D, McBride MW, Gaasenbect M, Gilday K, Beattie E, Miller WH, McClure JD, Polke JM, Montezano A, Touyz RM, Dominiczak AF. Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat. Congenic analysis. Hypertension. 2007;50:1134–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Smithies O. Turning pages (Nobel Lecture). Chembiochem. 2008;9:1342–2359.PubMedCrossRefGoogle Scholar
  21. 21.
    Dahl LK. Effects of chronic excess salt feeding. Induction of self-sustaining hypertension in rats. J Exp Med. 1961;114:231–6.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature. 1962;194:480–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Okomoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.CrossRefGoogle Scholar
  24. 24.
    Okamoto K, Tabei R, Fukkushima M, Nosaka S, Yamori Y, Ichijima K, Haebara H, Matsumoto M, Maruyama T, Suzuki Y, Tamegai M. Further observations of the development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1966;30:703–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Aoki K, Yamori Y, Ooshima A, Okamoto K. Effects of high or low sodium intake in spontaneously hypertensive rats. Jpn Circ J. 1972;36:539–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Bianchi G, Baer PG, Fox U, Duzzi L, Pagetti D, Giovanetti AM. Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats. Circ Res. 1975;36/37(suppl I):153–61.CrossRefGoogle Scholar
  27. 27.
    Pfeffer MA, Frohlich ED. Hemodynamic and myocardial function in young and old normotensive and spontaneously hypertensive rats. Circ Res. 1973;32(I):28–38.PubMedGoogle Scholar
  28. 28.
    Chrysant SG, Walsh GM, Frohlich ED. Hemodynamic changes induced by prolonged NaC1 and DOCA administration in spontaneously hypertensive rats (SHR). Angiology. 1978;29:303–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Chrysant SG, Walsh GM, Kem DC, Frohlich ED. Hemodynamic and metabolic evidence of salt sensitivity in spontaneously hypertensive rats. Am J Physiol. 1979;236:H403–8.Google Scholar
  30. 30.
    Sesoko S, Pegram BL, Wallis GW, Frohlich ED. DOCA-salt induced malignant hypertension in spontaneously hypertensive rats. J Hypertens. 1984;2:49–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Frohlich ED, Chien Y, Sesoko S, Pegram BL. Relationships between dietary sodium intake, hemodynamics and cardiac mass in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Am J Physiol. 1993;264:R30–4.PubMedGoogle Scholar
  32. 32.
    Ahn J, Varagic J, Slama M, Susic D, Frohlich ED. Cardiac structural and functional responses to salt loading in SHR. Am J Physiol Heart Circ Physiol. 2004;287:H767–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Varagic J, Frohlich ED. Hypertension and the multifactorial role of salt. Lab Med. 2005;36:652–5.CrossRefGoogle Scholar
  34. 34.
    Slama M, Ahn J, Peltier M, Maizel J, Chemla D, Varagic J, Susic D, Tribouilloy C, Frohlich ED. Validation of echocardiographic and Doppler indices of left ventricular relaxation in adult hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2005;289:H1131–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Varagic J, Frohlich ED, Diez J, Susic D, Ahn J, Gonzalez A, Lopez B. Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR. Am J Physiol Heart Circ Physiol. 2006;290:H1503–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Matavelli LC, Zhou X, Varagic J, Susic D, Frohlich ED. Salt-loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292:H814–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Varagic J, Frohlich ED, Susic D, Ahn J, Matavelli L, Lopez B, Diez J. AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am J Physiol Heart Circ Physiol. 2008;294:H853–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Susic D, Zhou X, Frohlich ED. Angiotensin blockade prevents salt-induced injury of the renal circulation in spontaneously hypertensive rats. Am J Nephrol. 2009;29:639–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Susic D, Varagic J, Frohlich ED. Cardiovascular effects of inhibition of renin-angiotensin-aldosterone system components in hypertensive rats given salt excess. Am J Physiol. 2010;298:H1177–81.Google Scholar
  40. 40.
    Susic D, Frohlich ED, Korori H, Shao W, Seth D, Navar LG. Salt-induced renal injury in SHR is mediated by AT1 receptor activation. J Hypertens. 2011;29:716–23.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Susic D, Fares H, Frohlich ED. Nebivolol prevents myocardial fibrosis and diastolic dysfunction in salt-loaded spontaneously hypertensive rats. J Am Soc Hypertens. 2012;6:316–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Susic D, Fares H, Frohlich ED. Telmisartan prevents salt-excess induced exacerbated (malignant) hypertension in spontaneously hypertensive rats. J Cardiovasc Pharmacol Ther. 2013;18:126–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Frohlich ED, Diez J. Left ventricular hypertrophy and treatment with renin angiotensin system inhibition. In: DeMello WC, Frohlich ED, editors. Renin angiotensin aldosterone system and cardiovascular disease. New York: Humana Press; 2009. p. 103–19.CrossRefGoogle Scholar
  44. 44.
    Yu HCM, Burrel LM, Black J, Wu LL, Dilley RJ, Cooper ME, Johnston CI. Salt induces myocardium and renal fibrosis in normotensive and hypertensive rats. Circulation. 1998;98:2621–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Frohlich ED. Chapter 63: Evaluation and management of the patient with essential hypertension. In: Chatterjee K, Anderson M, Heistad D, Kerber R, editors. Cardiology – an illustrated text book, vol. 2. New Delhi: Jaypee Brothers Medical Pub. LTD; 2012. p. 1129–44.Google Scholar
  46. 46.
    Partovian C, Benetos A, Pommies JP, Mischler W, Safar ME. Effects of a chronic high-salt diet on large artery structure: role of endogenous bradykinin. Am J Physiol. 1998;274:H1423–8.PubMedGoogle Scholar
  47. 47.
    Labat C, Lacolley P, Lajemi M, deGaspero M, Safar ME, Benetos A. Effects of valsartan on mechanical properties of the carotid artery in spontaneously hypertensive rats under high-salt diet. Hypertension. 2001;38:439–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Mercier N, Labat C, Louis H, Cattan V, Benetos A, Safar ME, Lacolley P. Sodium, arterial stiffness, and cardiovascular mortality in hypertensive rats. Am J Hypertens. 2007;20:319–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Stier Jr CT, Chander P, Gutstein WH, Levine S, Itskovitz HD. Therapeutic benefit of captopril in salt-loaded stroke-prone spontaneously hypertensive rats is independent of hypertensive effect. Am J Hypertens. 1991;3:680–7.Google Scholar
  50. 50.
    Kreutz R, Kovacevic L, Schulz A, Rothermund L, Ketteler M, Paul M. Effect of high NaC1 diet on spontaneously hypertension in a genetic rat model with reduced nephron number. J Hypertens. 2000;18:777–82.PubMedCrossRefGoogle Scholar
  51. 51.
    duCaIlar G, Ribstein J, Mimran A. Dietary sodium intake and target organ damage in essential hypertension. Am J Hypertens. 2002;15:222–9.CrossRefGoogle Scholar
  52. 52.
    Langenfeld MR, Schobel H, Veelken R, Weihprecht H, Schmieder RE. Impact of dietary sodium intake on left ventricular diastolic filling in early essential hypertension. Eur Heart J. 1998;19:951–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Williams JS, Solomon SD, Crivaro M, Colin PR. Dietary sodium intake modulates myocardial relaxation responsiveness to angiotensin II. Transl Res. 2006;48:49–54.CrossRefGoogle Scholar
  54. 54.
    Hummel SL, Seymour M, Brook RD, Kollas TJ, Sheth SS, Rosenblum HR, Wells JM, Weder AB. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60:1200–6.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kalogeropoulous A, Georgiopouloa V, Psaty BM, Rodondi N, Smith AL, Harrison DG, Liu Y, Hoffmann U, Bauer DC, Neuman AB, Kritchevsky SB, Harris TB, Butler J. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55:2129–37.CrossRefGoogle Scholar
  56. 56.
    Feld LG, van Leiw JB, Brentjens JR, Boylan JW, Bemben S, Chang H, Manz N. Renal lesions and proteinuria in the spontaneously hypertensive rat model made normotensive by treatment. Kidney Int. 1981;20:606–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirawa N, Uchara Y, Kawabata Y, Numabe A, Ogawa N, Gomi T, Ikeda T, Goto A, Toyo-oba T, Omata M. High-salt intake potentiates the renal vascular and glomerular damage caused by low doses of angiotensin II in uni-nephrectomized rats. J Hypertens. 1999;17:923–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Inada Y, Tazawa S, Murakami M, Akahane M. KRH-594, a new angiotensin AT1 receptor antagonist, prevents end-organ damage in stroke-prone spontaneously hypertensive/Izm rats. Clin Exp Pharmacol Physiol. 2001;28:206–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Khalil RA. Dietary salt and hypertension: new molecular targets add more spice. Am J Physiol Regul Integr Comp Physiol. 2006;290:R509–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Price DA, Fisher NDL, Lansang MC, Stevanovic R, Williams GH, Hollenberg NK. Renal perfusion in blacks: alterations caused by insuppressibility of intrarenal renin with salt. Hypertension. 2002;40:186–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Verhave JC, Hillege HL, Burgerhof JGM, Janssen WMT, Gansevoort RT, Navis GJ, de Zeeuw D, Jong PE. Sodium intake affects urinary albumin excretion especially in overweight subjects. J Intern Med. 2004;256:324–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Swift PA, Markandu ND, Sagnella GA, He FJ, MacGegor GA. Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial. Hypertension. 2005;46:308–16.PubMedCrossRefGoogle Scholar
  63. 63.
    Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85:679–715.PubMedCrossRefGoogle Scholar
  64. 64.
    Schunkert H, Ingelfinger JR, Jacob H, Jackson B, Bouyounes B, Dzau VJ. Reciprocal feedback regulation of kidney angiotensinogen and renin RNA expressions by angiotensin II. Am J Physiol. 1992;263:E863–9.PubMedGoogle Scholar
  65. 65.
    Kobori H, Ohashi N, Katsurada A, Miyata K, Satou R, Saito T, Mamamoto T. Urinary angiotensinogen as a potential biomarker of severity of chronic kidney diseases. J Am Soc Hypertens. 2008;2:349–54.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Kobori H, Alper B, Shenava R, Katsurada A, Saito T, Ohashi N, Urushihara M, Miyata K, Satoru R, Hamm L, Navar G. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system in hypertensive patients. Hypertension. 2009;53(part 2):344–50.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Kobori H, Urushhara M, Xu JH, Berenson GS, Navar LG. Urinary angiotensinogen is correlated with blood pressure in men (Bogalusa Heart Study). J Hypertens. 2010;28:1422–8.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Arita M, Horinaka S, Frohlich ED. Biochemical components and myocardial performance after reversal of left ventricular hypertrophy in spontaneously hypertensive rats. J Hypertens. 1993;11:951–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Lopez B, Quenejata R, Gonzalez A, Larman H, Diez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure. Hypertension. 2013;60:677–83.CrossRefGoogle Scholar
  70. 70.
    Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted and left ventricle of the rat. Circ Res. 1985;57:84–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown Jr EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial. N Engl J Med. 1992;327:669–77.Google Scholar
  72. 72.
    Pfeffer MA, Frohlich ED. Improvements in clinical outcomes with the use of angiotensin converting enzyme inhibitors: cross-fertilization between clinical and basic investigation. Am J Physiol Heart Circ Physiol. 2006;291:H2021–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Cook NR, Cutler JA, Obarzauck E, Buring JE, Rexrode KM, Kumanyika SK, Appel LJ, Whelton PK. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). Br Med J. 2007;334:885–8.CrossRefGoogle Scholar
  74. 74.
    Page IH. Pathogenesis of arterial hypertension. JAMA. 1949;140:451–7.CrossRefGoogle Scholar
  75. 75.
    Page IH. Arterial hypertension in retrospect. Circ Res. 1974;34:133–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of CardiologyOchsner Clinic FoundationNew OrleansUSA

Personalised recommendations