Skip to main content

Shape-Based Object Discovery in Images

  • Chapter
  • 2783 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

This paper presents an overview of our recent work on shape-based object discovery in images. The overview focuses on the following related problems: (i) discovery of all distinct 2D object categories frequently occurring in an unlabeled set of images; (ii) learning a model of the discovered categories; and (iii) recognition and localization of objects from the discovered categories in new images. The paper argues that using image contours as basic features, and thus directly grounding object discovery and recognition on shape, offers a number of advantages in solving (i)–(iii) over more commonly used point features. Since shape is directly encoded by layouts of image contours, similar contour layouts across the images are expected to belong rather to object occurrences, than the background. The contour layouts are captured by a graph over all pairs of matching contours from different images. The graph’s maximum a posteriori multicoloring assignment is taken to represent the shapes of discovered objects. Our empirical evaluation suggests that shape is more expressive and discriminative than photometric features for object discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Payet N, Todorovic S (2009) Matching hierarchies of deformable shapes. In: Proc 7th IAPR-TC-15 workshop graph-based representations in pattern recognition (GbR), pp 1–10

    Chapter  Google Scholar 

  2. Payet N, Todorovic S (2010) From a set of shapes to object discovery. In: ECCV

    Google Scholar 

  3. Payet N, Todorovic S (2011) From contours to 3D object detection and pose estimation. In: ICCV (oral presentation)

    Google Scholar 

  4. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, vol 2, pp 264–271

    Google Scholar 

  5. Torralba A, Murphy K, Freeman W (2004) Sharing features: efficient boosting procedures for multiclass object detection. In: CVPR, vol 2, pp 762–769

    Google Scholar 

  6. Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In: Workshop on statistical learning in computer vision, ECCV, pp 17–32

    Google Scholar 

  7. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490

    Article  Google Scholar 

  8. Sudderth E, Torralba A, Freeman WT, Willsky AS (2005) Learning hierarchical models of scenes, objects, and parts. In: ICCV, vol 2, pp 1331–1338

    Google Scholar 

  9. Winn J, Criminisi A, Minka T (2005) Object categorization by learned universal visual dictionary. In: ICCV, vol 2, pp 1800–1807

    Google Scholar 

  10. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 28(4):594–611

    Article  Google Scholar 

  11. Opelt A, Pinz A, Zisserman A (2006) Incremental learning of object detectors using a visual shape alphabet. In: CVPR, vol 1, pp 3–10

    Google Scholar 

  12. Biederman I (1988) Surface versus edge-based determinants of visual recognition. Cogn Psychol 20(1):38–64

    Article  Google Scholar 

  13. Williams LR, Jacobs DW (1995) Stochastic completion fields: a neural model of illusory contour shape and salience. In: ICCV, pp 408–415

    Google Scholar 

  14. Lindenbaum M (1995) Bounds on shape recognition performance. IEEE Trans Pattern Anal Mach Intell 17(7):666–680

    Article  Google Scholar 

  15. Liu TL, Geiger D (1999) Approximate tree matching and shape similarity. In: Proc IEEE int conf computer vision, vol 1, pp 456–462

    Google Scholar 

  16. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K, Zucker SW (2005) Indexing hierarchical structures using graph spectra. IEEE Trans Pattern Anal Mach Intell 27(7):1125–1140

    Article  Google Scholar 

  17. Keselman Y, Dickinson S (2005) Generic model abstraction from examples. IEEE Trans Pattern Anal Mach Intell 27(7):1141–1156

    Article  Google Scholar 

  18. Siddiqi K, Kimia BB (1996) A shock grammar for recognition. In: CVPR, p 507

    Google Scholar 

  19. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571

    Article  Google Scholar 

  20. Felzenszwalb PF (2005) Representation and detection of deformable shapes. IEEE Trans Pattern Anal Mach Intell 27(2):208–220

    Article  Google Scholar 

  21. Zhu Q, Wang L, Wu Y, Shi J (2008) Contour context selection for object detection: a set-to-set contour matching approach. In: ECCV (2), pp 774–787

    Google Scholar 

  22. Kokkinos I, Yuille AL (2009) HOP: hierarchical object parsing. In: CVPR

    Google Scholar 

  23. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  24. Torsello A, Robles-Kelly A, Hancock ER (2007) Discovering shape classes using tree edit-distance and pairwise clustering. Int J Comput Vis 72(3):259–285

    Article  Google Scholar 

  25. Trinh NH, Kimia BB (2011) Skeleton search: category-specific object recognition and segmentation using a skeletal shape model. Int J Comput Vis 94(2):215–240

    Article  Google Scholar 

  26. Bai X, Wang X, Liu W, Latecki LJ, Tu Z (2009) Active skeleton for non-rigid object detection. In: ICCV

    Google Scholar 

  27. Shotton J, Blake A, Cipolla R (2008) Multiscale categorical object recognition using contour fragments. IEEE Trans Pattern Anal Mach Intell 30(7):1270–1281

    Article  Google Scholar 

  28. Ferrari V, Tuytelaars T, Gool LV (2006) Object detection by contour segment networks. In: ECCV, pp 14–28

    Google Scholar 

  29. Perona P, Malik J (1991) Detecting and localizing edges composed of steps, peaks and roofs. In: ICCV, pp 52–57

    Google Scholar 

  30. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898–916

    Article  Google Scholar 

  31. Felzenszwalb P, McAllester D (2006) A min-cover approach for finding salient curves. In: IEEE workshop on perceptual organization (POCV)

    Google Scholar 

  32. Russell BC, Freeman WT, Efros A, Sivic J, Zisserman A (2006) Using multiple segmentations to discover objects and their extent in image collections. In: CVPR

    Google Scholar 

  33. Todorovic S, Ahuja N (2008) Unsupervised category modeling, recognition, and segmentation in images. IEEE Trans Pattern Anal Mach Intell 30(12):1–17

    Article  Google Scholar 

  34. Kim G, Faloutsos C, Hebert M (2008) Unsupervised modeling of object categories using link analysis techniques. In: CVPR

    Google Scholar 

  35. Lee YJ, Grauman K (2009) Shape discovery from unlabeled image collections. In: CVPR

    Google Scholar 

  36. Felzenszwalb P, McAllester D (2006) A min-cover approach for finding salient curves. In: CVPR POCV

    Google Scholar 

  37. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  38. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  39. Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49(4):327–335

    Google Scholar 

  40. Lin L, Zeng K, Liu X, Zhu SC (2009) Layered graph matching by composite cluster sampling with collaborative and competitive interactions. In: CVPR, June 2009

    Google Scholar 

  41. Lee YJ, Grauman K (2008) Foreground focus: unsupervised learning from partially matching images. In: BMVC

    Google Scholar 

  42. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR

    Google Scholar 

  43. Russell BC, Torralba A, Murphy KP, Freeman WT (2005) Labelme: a database and web-based tool for image annotation. Technical Report AIM-2005-025, MIT

    Google Scholar 

  44. Borenstein E, Ullman S (2002) Class-specific, top-down segmentation. In: ECCV, vol 2, pp 109–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Todorovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Todorovic, S., Payet, N. (2013). Shape-Based Object Discovery in Images. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_27

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics