Skip to main content

The Role of Mid-Level Shape Priors in Perceptual Grouping and Image Abstraction

  • Chapter
Shape Perception in Human and Computer Vision

Abstract

Perceptual grouping plays a critical role in both human and computer vision. However, with the object categorization community’s preoccupation with object detection, interest in perceptual grouping has waned. The reason for this is clear: the object-independent, mid-level shape priors that form the basis of perceptual grouping are subsumed by the object-dependent, high-level shape priors defined by a target object. As the recognition community moves from object detection back to object recognition, a linear search through a large database of target models is intractable, and perceptual grouping will be essential for sublinear scaling. We review three approaches to perceptual grouping based on grouping superpixels. In the first, we use symmetry to group superpixels into symmetric parts, and then group the parts to form structured objects. In the second, we use contour closure to group superpixels, yielding a figure-ground segmentation. In the third, we use a vocabulary of simple parts to both group superpixels into parts and recover the abstract shapes of the parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binford TO (1971) Visual perception by computer. In: Proceedings, IEEE conference on systems and control, Miami, FL

    Google Scholar 

  2. Blum H (1967) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W (ed) Models for the perception of speech and visual form. MIT Press, Cambridge, pp 362–380

    Google Scholar 

  3. Buchin K, Knauer C, Kriegel K, Schulz A, Seidel R (2007) On the number of cycles in planar graphs. In: In proceedings, COCOON, LNCS, vol 4598. Springer, Berlin, pp 97–107

    Google Scholar 

  4. Carreira J, Sminchisescu C (2012) Cpmc: automatic object segmentation using constrained parametric min-cuts. IEEE Trans Pattern Anal Mach Intell 34(7):1312–1328

    Article  Google Scholar 

  5. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models–their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  6. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893

    Google Scholar 

  7. Dickinson S, Pentland A, Rosenfeld A (1990) A representation for qualitative 3-d object recognition integrating object-centered and viewer-centered models. In: Leibovic K (ed) Vision: a convergence of disciplines. Springer, New York

    Google Scholar 

  8. Dickinson S, Pentland A, Rosenfeld A (1992) From volumes to views: an approach to 3-d object recognition. CVGIP, Image Underst 55(2):130–154

    Article  MATH  Google Scholar 

  9. Dickinson S, Pentland A, Rosenfeld A (1992) 3-d shape recovery using distributed aspect matching. IEEE Trans Pattern Anal Mach Intell 14(2):174–198

    Article  Google Scholar 

  10. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  11. Huttenlocher D, Ullman S (1990) Recognizing solid objects by alignment with an image. Int J Comput Vis 5(2):195–212

    Article  Google Scholar 

  12. Kolmogorov V, Boykov YY, Rother C (2007) Applications of parametric maxflow in computer vision. In: IEEE international conference on computer vision, pp 1–8

    Google Scholar 

  13. Levinshtein A, Dickinson S, Sminchisescu C (2009) Multiscale symmetric part detection and grouping. In: IEEE international conference on computer vision, September 2009

    Google Scholar 

  14. Levinshtein A, Sminchisescu C, Dickinson S (2010) Optimal contour closure by superpixel grouping. In: ECCV, pp 480–493

    Google Scholar 

  15. Levinshtein A, Sminchisescu C, Dickinson S (2012) Optimal image and video closure by superpixel grouping. Int J Comput Vis 100(1):99–119

    Article  Google Scholar 

  16. Levinshtein A, Sminchisescu C, Dickinson SJ (2010) Spatiotemporal closure. In: ACCV, pp 369–382

    Google Scholar 

  17. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297

    Article  Google Scholar 

  18. Li F, Carreira J, Sminchisescu C (2010) Object recognition as ranking holistic figure-ground hypotheses. In: CVPR, June 2010

    Google Scholar 

  19. Lindeberg T, Bretzner L (2003) Real-time scale selection in hybrid multi-scale representations. In: Scale-space. LNCS, vol 2695. Springer, Berlin, pp 148–163

    Google Scholar 

  20. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  21. Lowe DG (1985) Perceptual organization and visual recognition. Kluwer Academic, Norwell

    Book  Google Scholar 

  22. Pritch Y, Rav-Acha A, Peleg S (2008) Nonchronological video synopsis and indexing. IEEE Trans Pattern Anal Mach Intell 30:1971–1984

    Article  Google Scholar 

  23. Roberts L (1965) Machine perception of three-dimensional solids. In: Tippett J et al. (eds) Optical and electro-optical information processing. MIT Press, Cambridge, pp 159–197

    Google Scholar 

  24. Sala P, Dickinson S (2010) Contour grouping and abstraction using simple part models. In: Proceedings, European conference on computer vision (ECCV), Crete, Greece, September 2010

    Google Scholar 

  25. Sala P, Macrini D, Dickinson S (2010) Spatiotemporal contour grouping using abstract part models. In: Proceedings, Asian conference on computer vision (ACCV), Queenstown, New Zealand, November 2010

    Google Scholar 

  26. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  27. Siddiqi K, Shokoufandeh A, Dickinson S, Zucker S (1999) Shock graphs and shape matching. Int J Comput Vis 35:13–32

    Article  Google Scholar 

  28. Stahl JS, Wang S (2007) Edge grouping combining boundary and region information. IEEE Trans Image Process 16(10):2590–2606

    Article  MathSciNet  Google Scholar 

  29. Street R (1931) A gestalt completion test: a study of a cross section of intellect. Teachers College Press, Columbia University, New York

    Google Scholar 

  30. Tiernan J (1970) An efficient search algorithm to find the elementary circuits of a graph. Commun ACM 13(12):722–726

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of NSERC, Mitacs, and DARPA. Sven Dickinson would like to thank Keith Price for providing the data in Fig. 1.1(b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven J. Dickinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dickinson, S.J., Levinshtein, A., Sala, P., Sminchisescu, C. (2013). The Role of Mid-Level Shape Priors in Perceptual Grouping and Image Abstraction. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics