Skip to main content

A PLC-Based System for Advanced Control

  • Chapter
  • 1966 Accesses

Part of the Advances in Industrial Control book series (AIC)

Abstract

The chapter presents a PLC-based system for advanced control called ASPECT. The ASPECT controller was designed to be an efficient and user-friendly engineering tool for the implementation of parameter-scheduling nonlinear control in the process industry, which is achieved by partial automation of the commissioning procedure. The key to the concept is the self-tuning mechanism. The controller parameters are automatically tuned from a nonlinear process model. The model is determined on the basis of operating process signals by experimental modelling, where an online-learning procedure is used. This procedure is based on model identification using the local learning approach. The two main components of the ASPECT system are the Run-time Module (RTM) and the Configuration Tool (CT). The RTM runs on a PLC or an embedded controller, performing all the main functionality of real-time control, online learning, and control performance monitoring. The CT, used on a personal computer (PC) only during the initial configuration phase, simplifies the commissioning procedure by providing guidance and default parameter values. The performance of the system is demonstrated with simulation experiments on a pH control process and with experimental application to an industrial valve-testing apparatus. In the conclusion, the lessons learned during the development and implementation of the system are discussed.

Keywords

  • Local Model
  • Controller Parameter
  • Local Controller
  • Model Branch
  • Configuration Tool

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-5176-0_11
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-5176-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16

Notes

  1. 1.

    The concept of IDR BLOK is closely related to the more recent “Function Block Diagram” of the IEC 61131-3 standard. An IEC 61131-3 compliant version of IDR BLOK has been developed recently.

  2. 2.

    Generally, the ASPECT controller is intended to be tuned empirically through experimentation, and process modelling is not required for simpler scheduling control applications.

References

  1. Anderson BDO, Brinsmead T, Liberzon D, Morse AS (2001) Multiple model adaptive control with safe switching. Int J Adapt Control Signal Process 15:445–470

    MATH  CrossRef  Google Scholar 

  2. Angelov PP, Filev DP (2004) An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Trans Syst Man Cybern, Part B, Cybern 34(1):484–497

    CrossRef  Google Scholar 

  3. Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning. ISA, International Society for Measurement and Control, Raleigh

    Google Scholar 

  4. Babuska R, Oosterhoff J, Oudshoorn A, Bruijn PM (2002) Fuzzy self-tuning PI control of pH in fermentation. Eng Appl Artif Intell 15:3–15

    CrossRef  Google Scholar 

  5. Bequette BW (1991) Non-linear control of chemical processes: a review. Ind Eng Chem Res 30:1391–1413

    CrossRef  Google Scholar 

  6. Blažič S, Škrjanc I, Gerkšič S, Dolanc G, Strmčnik S, Hadjiski MB, Stathaki A (2003) On-line fuzzy identification for an advanced intelligent controller. In: Proceedings IEEE international conference on industrial technology ICIT 2003, Maribor, Slovenia, pp 912–916

    Google Scholar 

  7. Blažič S, Škrjanc I, Gerkšič S, Dolanc G, Strmčnik S, Hadjiski MB, Stathaki A (2009) Online fuzzy identification for an intelligent controller based on a simple platform. Eng Appl Artif Intell 22:628–638

    CrossRef  Google Scholar 

  8. Frantz FK (1995) A taxonomy of model abstraction techniques. In: Proceedings of the 1995 winter simulation conference, Arlington, VA, USA, pp 1413–1420

    CrossRef  Google Scholar 

  9. Dougherty D, Cooper D (2003) A practical multiple model adaptive strategy for multivariable model predictive control. Control Eng Pract 11:649–664

    CrossRef  Google Scholar 

  10. Dovžan D, Škrjanc I (2011) Recursive clustering based on a Gustafson–Kessel algorithm. Evol Syst 2:15–24

    CrossRef  Google Scholar 

  11. Dahleh M, Rinehart M (2009) Networked decision systems. In: Samad T, Annaswamy A (eds) The impact of control technology. IEEE control systems society report. Online: http://ieeecss.org/main/IoCT-report

    Google Scholar 

  12. Gerkšič S, Dolanc G, Vrančić D, Kocijan J, Strmčnik S, Blažič S, Škrjanc I, Marinšek Z, Božiček M, Stathaki A, King R, Hadjiski M, Boshnakov K (2006) Advanced control algorithms embedded in a programmable logic controller. Control Eng Pract 14:935–948

    CrossRef  Google Scholar 

  13. Gundala R, Hoo KA, Piovoso MJ (2000) Multiple model adaptive control design for a multiple-input multiple-output chemical reactor. Ind Eng Chem Res 39:1554–1564

    CrossRef  Google Scholar 

  14. Hägglund T, Åström KJ (2000) Supervision of adaptive control algorithms. Automatica 36:1171–1180

    MATH  CrossRef  Google Scholar 

  15. Henson MA, Seborg DE (1994) Adaptive non-linear control of a pH neutralisation process. IEEE Trans Control Syst Technol 2:169–182

    CrossRef  Google Scholar 

  16. Henson MA, Seborg DE (1997) Non-linear process control. Prentice-Hall PTR, Upper Saddle River

    Google Scholar 

  17. INEA d.o.o. (2001) IDR BLOK process control tools for Mitsubishi Electric PLC’s. User’s Manual, Ver. 4.20. INEA d.o.o., Ljubljana, http://www.inea.si/index.php?kategorija=158

  18. Isermann R (1991) Digital control systems: stochastic control, multivariable control, adaptive control, applications, vol 2, 2nd revised edn. Springer, Berlin

    Google Scholar 

  19. Kocijan J, Žunič G, Strmčnik S, Vrančić D (2002) Fuzzy gain-scheduling control of a gas+liquid separation plant implemented on a PLC. Int J Control 75(14):1082–1091

    MATH  CrossRef  Google Scholar 

  20. Kocijan J, Vrančić D, Dolanc G, Gerkšič S, Strmčnik S, Škrjanc I, Blažič S, Božiček M, Marinšek Z, Hadjinski MB, Boshnakov K, Stathaki A, King R (2003) Auto-tuning non-linear controller for industrial use. In: Proc of IEEE international conference on industrial technology ICIT 2003, Maribor, Slovenia, pp 906–910

    CrossRef  Google Scholar 

  21. King RE, Koumboulis FN, Stathaki A (2002) Intelligent hybrid industrial control. In: Proceedings of 1st intl IEEE symp intelligent systems, Varna, September 2002, vol 2, pp 2–6

    CrossRef  Google Scholar 

  22. Koumboulis FN, King RE, Stathaki A (2007) Logic-based switching controllers—a stepwise safe switching approach. Inf Sci 177(13):2736–2755

    MATH  CrossRef  Google Scholar 

  23. Leith DJ, Leithead WE (1998) Appropriate realisation of MIMO gain-scheduled controllers. Int J Control 70(1):13–50

    MathSciNet  MATH  CrossRef  Google Scholar 

  24. Ljung L (1987) System identification. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  25. Maciejowski JM (2002) Predictive control with constraints. Prentice Hall, Harlow

    Google Scholar 

  26. Morse AS (1995) Control using logic-based switching. In: Isidori A (ed) Trends in control—a European perspective. Springer, London, pp 69–113

    CrossRef  Google Scholar 

  27. Murray-Smith R, Johansen TA (eds) (1997) Multiple model approaches to modelling and control. Taylor and Francis, London

    Google Scholar 

  28. Nelles O, Fink A, Isermann R (2000) Local linear model trees (lolimot) toolbox for nonlinear system identification. In: IFAC symposium on system identification (SYSID), Santa Barbara, USA

    Google Scholar 

  29. Qin SJ, Badgwell TA (1999) An overview of nonlinear model predictive control applications. In: Allgöwer F, Zheng A (eds) Nonlinear model predictive control. Birkhäuser, Basel, pp 370–392

    Google Scholar 

  30. Richalet J (1993) Pratique de la commande prédictive. Hermès, Paris

    Google Scholar 

  31. Samad T, Annaswamy A (eds) (2011) The impact of control technology. IEEE Control Systems Society report. Online: http://ieeecss.org/main/IoCT-report

  32. Seborg DE (1999) A perspective on advanced strategies for process control (revisited). In: Frank PM (ed) Advances in control, highlights of ECC’99. Springer, London, pp 103–134

    CrossRef  Google Scholar 

  33. Smith OJM (1959) A controller to overcome dead-time. ISA J 6(2):28–33

    Google Scholar 

  34. Stephanopoulus G, Henning G, Leone H (1990) Model LA—a modelling language for process engineering, II. Multifaceted modelling of processing systems. Comput Chem Eng 14:847–869

    CrossRef  Google Scholar 

  35. Takatsu H, Itoh T, Araki M (1998) Future needs for the control theory in industries—report and topics of the control technology survey in Japanese industry. J Process Control 8(5/6):369–374

    CrossRef  Google Scholar 

  36. Tan S, Hang C-C, Chai J-S (1997) Gain scheduling: from conventional to neuro-fuzzy. Automatica 33(3):411–419

    MathSciNet  MATH  CrossRef  Google Scholar 

  37. Vrančić D, Huba M (2007) LEK tuner—program package for tuning PID controllers. In: Mikleš J, Fikar M, Kvasnica M (eds) Proceedings of 16th international conference process control 2007, Štrbské Pleso. Slovak University of Technology, Bratislava, pp 225-1–225-5

    Google Scholar 

  38. Vrančić D, Strmčnik S, Juričić D (2001) A magnitude optimum multiple integration tuning method for filtered PID controller. Automatica 37:1473–1479

    MATH  CrossRef  Google Scholar 

  39. Whiteley AL (1946) Theory of servo systems, with particular reference to stabilization. J IEE, Part II 93(34):353–372

    Google Scholar 

  40. Wooldridge M, Jennings NR (1995) Intelligent agents, theory and practice. Knowl Eng Rev 10(2):115–152

    CrossRef  Google Scholar 

  41. Zeigler PB (1979) Structuring principles for multifaceted system modelling. In: Zeigler BP, Elzas MS, Klir GJ, Ören TI (eds) Methodology in systems modelling and simulation. North-Holland, Amsterdam, pp 93–135

    Google Scholar 

Download references

Acknowledgements

The contributions of all other partners in the ASPECT project are gratefully acknowledged. The ASPECT project was financially supported by the EC under contract IST-1999-56407. ASPECT ©2002 software is the property of INEA d.o.o., Indelec Europe S.A., and Start Engineering JSCo. This chapter is based on: Gerkšič S. et al. (2006) Advanced control algorithms embedded in a programmable logic controller, Control Engineering Practice, 14:935–948 ©Elsevier.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gerkšič, S. et al. (2013). A PLC-Based System for Advanced Control. In: Strmčnik, S., Juričić, Đ. (eds) Case Studies in Control. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5176-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5176-0_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5175-3

  • Online ISBN: 978-1-4471-5176-0

  • eBook Packages: EngineeringEngineering (R0)