Skip to main content

Energy Efficient Routing in Wireless Sensor Networks

  • Chapter
Next-Generation Wireless Technologies

Abstract

Recently, Wireless Sensor Networks (WSNs) have attracted lot of attention due to their pervasive nature and deployment in many real world applications. Sensor nodes are scattered in the environment to sense and send the specified data back to the desired users. To achieve this goal, we need an efficient and scalable routing protocol that can select the most optimal routes between the sensor nodes and users who are normally far away. Since sensor nodes need to be embedded in the environment they tend to be very small with low processing and memory and have small battery sizes. To prolong the lifetime of the network and wireless sensor nodes, an important requirement of wireless sensor routing protocols is their energy-efficiency. We review recent energy-efficient wireless sensor routing protocols, which have been proposed recently in the literature and evaluate them using a comprehensive taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkaya, K., & Younis, M. (2004). Energy-aware routing to a mobile gateway in wireless sensor networks. In Proceedings of the IEEE global telecommunications conference workshops (pp. 16–21).

    Google Scholar 

  2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  3. Ali, A., Khelil, A., Shaikh, F. K., & Suri, N. (2012). Efficient predictive monitoring of wireless sensor networks. International Journal of Autonomous and Adaptive Communications Systems (IJAACS), 5(3), 233–254.

    Google Scholar 

  4. Ammari, H. M., & Das, S. K. (2005). Data dissemination to mobile sinks in wireless sensor networks: an information theoretic approach. In Proceedings of the international conference on mobile adhoc and sensor systems (MASS).

    Google Scholar 

  5. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2006). An adaptive and low-latency power management protocol for wireless sensor networks. In ACM international workshop on mobility management and wireless access (pp. 67–74).

    Chapter  Google Scholar 

  6. Bellur, B. R., & Ogier, R. G. (1999). A reliable, efficient topology broadcast protocol for dynamic networks. In Proceedings of the IEEE international conference on computer communications (INFOCOM) (pp. 178–186).

    Google Scholar 

  7. Chen, M., Leung, V. C., & Mao, S. (2009). Directional controlled fusion in wireless sensor networks. Mobile Networks and Applications, 14(2), 220–229.

    Article  Google Scholar 

  8. Felemban, E., Lee, C.-G., & Ekici, E. (2006). Mmspeed: multipath multi-speed protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.

    Article  Google Scholar 

  9. Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(4), 592–608.

    Article  Google Scholar 

  10. Garcia-Luna-Aceves, J. J., Mosko, M., & Perkins, C. E. (2003). A new approach to on-demand loop-free routing in ad hoc networks. In Proceedings of the twenty-second annual symposium on principles of distributed computing (pp. 53–62).

    Chapter  Google Scholar 

  11. Gu, L., & Stankovic, J. A. (2005). Radio-triggered wake-up for wireless sensor networks. Real-Time Systems, 29(2–3), 157–182.

    Article  Google Scholar 

  12. Guang-Hui, L., Jun, Z., & Zhi, W. (2006). Research on forest fire detection based on wireless sensor network. In Proceedings of the World Congress on intelligent control and automation (pp. 275–279).

    Google Scholar 

  13. Hancke, G. P., & Leuschner, C. J. (2007). SEER: a simple energy efficient routing protocol for wireless sensor networks. South African Computer Journal, 39, 17–24.

    Google Scholar 

  14. Handy, M., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Proceedings of the IEEE mobile and wireless communications network (MWCN) (pp. 368–372).

    Google Scholar 

  15. Hartung, C., Han, R., Seielstad, C., & Holbrook, S. (2006). FireWxNet: a multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the 4th international conference on mobile systems, applications and services (pp. 28–41).

    Google Scholar 

  16. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  17. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences (Vol. 8).

    Google Scholar 

  18. Hou, X., Tipper, D., & Kabara, J. (2004). Label-based multipath routing (LMR) in wireless sensor networks. In Proceedings of the international symposium on advanced radio technologies (ISART).

    Google Scholar 

  19. Iyer, Y. G., Gandham, S., & Venkatesan, S. (2005). STCP: a generic transport layer protocol for wireless sensor networks. In Proceedings of the international conference on computer communications and networks (ICCCN) (pp. 449–454).

    Google Scholar 

  20. Kandris, D., Tsioumas, P., Tzes, A., Nikolakopoulos, G., & Vergados, D. D. (2009). Power conservation through energy efficient routing in wireless sensor networks. Sensors, 9, 7320–7342.

    Article  Google Scholar 

  21. Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava, M. B., & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks. In Proceedings of the 2nd international conference on mobile systems, applications, and services (MobiSys) (pp. 111–124).

    Chapter  Google Scholar 

  22. Keshavarzian, A., Lee, H., & Venkatraman, L. (2006). Wakeup scheduling in wireless sensor networks. In Proceedings of the 7th ACM international symposium on mobile ad hoc networking and computing (pp. 322–333).

    Google Scholar 

  23. Khelil, A., Shaikh, F. K., Ali, A., & Suri, N. (2009). gMAP: an efficient construction of global maps for mobility-assisted wireless sensor networks. In Proceedings of the conference on wireless on demand network systems and services (WONS) (pp. 189–196).

    Google Scholar 

  24. Khelil, A., Shaikh, F. K., Ali, A., Suri, N., & Reinl, C. (2010). Delay tolerant monitoring of mobility-assisted wireless sensor networks. In Delay tolerant networks: protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  25. Kim, H. S., Abdelzaher, T. F., & Kwon, W. H. (2003). Minimum-energy asynchronous dissemination to mobile sinks in wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 193–204).

    Chapter  Google Scholar 

  26. Lédeczi, Á., & Maróti, M. (2012). Wireless sensor node localization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 85–99.

    Article  Google Scholar 

  27. Lotf, J., Bonab, M., & Khorsandi, S. (2008). A novel cluster-based routing protocol with extending lifetime for wireless sensor networks. In Proceedings of the 5th IFIP international conference on wireless and optical communications networks (WOCN08) (pp. 1–5).

    Google Scholar 

  28. Lukachan, G., & Labrador, M. (2004). SELAR: scalable energy-efficient location aided routing protocol for wireless sensor networks. In Proceedings of the 29th annual IEEE international conference on local computer networks (pp. 694–695).

    Chapter  Google Scholar 

  29. Lung, C.-H., & Zhou, C. (2010). Using hierarchical agglomerative clustering in wireless sensor networks: an energy-efficient and flexible approach. Ad Hoc Networks, 8(3), 328–344.

    Article  Google Scholar 

  30. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In Proceedings of the 15th international parallel & distributed processing symposium (pp. 2009–2015).

    Google Scholar 

  31. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the 16th international parallel and distributed processing symposium (pp. 195–202).

    Chapter  Google Scholar 

  32. Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183–197.

    Article  Google Scholar 

  33. Ogier, R., Templin, F., & Lewis, M. (2004). RFC: 3684 Topology dissemination based on reverse-path forwarding (TBRPF).

    Google Scholar 

  34. Pantazis, N. A., & Vergados, D. D. (2007). A survey on power control issues in wireless sensor networks. IEEE Communications Surveys and Tutorials, 9(4), 86–107.

    Article  Google Scholar 

  35. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2012). Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Communications Surveys and Tutorials. doi:10.1109/SURV.2012.062612.00084.

    Google Scholar 

  36. Paruchuri, V., Basavaraju, S., Durresi, A., Kannan, R., & Iyengar, S. S. (2004). Random asynchronous wakeup protocol for sensor networks. In International conference on broadband networks (pp. 710–717).

    Chapter  Google Scholar 

  37. Sankarasubramaniam, Y., Akan, Ö. B., & Akyildiz, I. F. (2003). ESRT: event-to-sink reliable transport in wireless sensor networks. In International symposium on mobile ad hoc networking and computing (MobiHoc) (pp. 177–188).

    Google Scholar 

  38. Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.

    Article  Google Scholar 

  39. Schurgers, C., Tsiatsis, V., & Srivastava, M. B. (2002). Stem: topology management for energy efficient sensor networks. In IEEE aerospace conference (pp. 1099–1108).

    Google Scholar 

  40. Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2–3), 215–233.

    Article  Google Scholar 

  41. Shaikh, F. K., Khanzada, T. J., & Memon, N. A. (2011). Exploiting spatio-temporal correlation for reliable information transport in WSNs. Mehran University Research Journal of Engineering and Technology, 30(1), 89–104.

    Google Scholar 

  42. Shaikh, F. K., Khelil, A., Ayari, B., Szczytowski, P., & Suri, N. (2010). Generic information transport for wireless sensor networks. In Proceedings of the IEEE international conference on sensor networks, ubiquitous, and trustworthy computing (SUTC) (pp. 27–34).

    Chapter  Google Scholar 

  43. Shih, K.-P., Wang, S.-S., Chen, H.-C., & Yang, P.-H. (2008). Collect: collaborative event detection and tracking in wireless heterogeneous sensor networks. Computer Communications, 31(14), 3124–3136.

    Article  Google Scholar 

  44. Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125–1143.

    Article  Google Scholar 

  45. Wang, Y.-H., Mao, H.-J., Tsai, C.-H., & Chuang, C.-C. (2005). HMRP: hierarchy-based multipath routing protocol for wireless sensor networks. In Proceedings of the 2005 international conference on embedded and ubiquitous computing (pp. 452–459).

    Google Scholar 

  46. Ye, F., Zhong, G., Lu, S., & Zhang, L. (2005). Gradient broadcast: a robust data delivery protocol for large scale sensor networks. Wireless Networks, 11(3), 285–298.

    Article  Google Scholar 

  47. Yu, F., Li, Y., Fang, F., & Chen, Q. (2007). A new tora-based energy aware routing protocol in mobile ad hoc networks. In Proceedings of the 3rd IEEE/IFIP international conference in central Asia on Internet (pp. 1–4).

    Chapter  Google Scholar 

  48. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks (Technical report). Computer Science Department, UCLA.

    Google Scholar 

  49. Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2009). Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wireless Networks, 15(1), 39–51.

    Article  Google Scholar 

  50. Zhang, H., Arora, A., Choi, Y., & Gouda, M. G. (2005). Reliable bursty convergecast in wireless sensor networks. In International symposium on mobile ad hoc networking and computing (MobiHoc) (pp. 266–276).

    Chapter  Google Scholar 

  51. Zhang, J., Jeong, C., Lee, G., & Kim, H. (2007). Cluster-based multi-path routing algorithm for multi-hop wireless network. Future Generation Communication and Networking, 1, 67–75.

    Google Scholar 

  52. Zheng, R., Hou, J. C., & Sha, L. (2003). Asynchronous wakeup for ad hoc networks. In International symposium on mobile ad hoc networking & computing (pp. 35–45).

    Google Scholar 

  53. Zimmerling, M., Dargie, W., & Reason, J. M. (2007). Energy-efficient routing in linear wireless sensor networks. In Proceedings of the 4th IEEE international conference on mobile adhoc and sensor systems (pp. 1–3).

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful comments which helped us to improve the quality and presentation of this chapter. Faisal K. Shaikh was partially supported by Mehran University of Engineering and Technology, Jamshoro, Pakistan and National ICT R&D Fund, Ministry of Information Technology, Pakistan under National Grassroots ICT Research Initiative. Sherali Zeadally was partially supported by a District of Columbia NASA Space Grant and an NSF TIP grant (Award Number 1036293) during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Karim Shaikh .

Editor information

Editors and Affiliations

Appendix: Acronyms

Appendix: Acronyms

ACK:

Acknowledgment

APTEEN:

Adaptive Threshold sensitive Energy Efficient sensor Network

CH:

Cluster Head

DCF:

Directional Controlled Fusion

DHAC:

Distributed hierarchical agglomerative clustering

DM:

Disjoint Multipath

EARM:

Energy-Aware Routing to Mobile Gateway

EBGRES:

Energy-efficient Beaconless Geographic Routing with Energy Supply

ELCH:

Extending Lifetime of Cluster Head

ESRT:

Event to Sink Reliable Transport

ETORA:

Energy-aware Temporarily Ordered Routing Algorithm

Ev2S:

Event to Sink

FM:

Funnel Multipath

GEAR:

Geographic and Energy Aware Routing

GIT:

Generic Information Transport

GPS:

Global Positioning System

GRAB:

GRAdient Broadcast

GREES:

Geographic Routing with Environmental Energy Supply

HM:

Hierarchical Multipath

LEACH:

Low Energy Adaptive Clustering Hierarchy

LEACH-C:

Low Energy Adaptive Clustering Hierarchy Centralized

LMR:

Label-based Multipath Routing

MAC:

Medium Access Control

MASP:

Maximum Amount Shortest Path

MERR:

Minimum Energy Relay Routing

MMSPEED:

Multi-Path and Multi-SPEED

OM:

Overlap Multipath

RBC:

Reliable Bursty Convergecast

RTPM:

Radio Triggered Power Management

SEAD:

Scalable Energy-efficient Asynchronous Dissemination

SEER:

Simple Energy Efficient Routing

SELAR:

Scalable Energy-efficient Location Aided Routing

SHPER:

Scaling Hierarchical Power Efficient Routing

STCP:

Sensor Transmission Control Protocol

STEM:

Sparse Topology and Energy Management

TDMA:

Time Division Multiple Access

TEEN:

Threshold Sensitive Energy Efficient Sensor Network

TORA:

Temporarily Ordered Routing Algorithm

VANETs:

Vehicular Adhoc Networks

WEDAS:

Weighted Entropy Data dissemination

WSN:

Wireless Sensor Network

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shaikh, F.K., Zeadally, S., Siddiqui, F. (2013). Energy Efficient Routing in Wireless Sensor Networks. In: Chilamkurti, N., Zeadally, S., Chaouchi, H. (eds) Next-Generation Wireless Technologies. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-5164-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5164-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5163-0

  • Online ISBN: 978-1-4471-5164-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics