Cooperation in Delay Tolerant Networks

  • Sudip Misra
  • Sujata Pal
  • Barun Kumar Saha
Part of the Computer Communications and Networks book series (CCN)


The delay tolerant networking architecture was proposed for the networks where the typical assumptions made for the Internet fails. One of the primary characteristics of such networks is the intermittent connectivity among the nodes, resulting in the lack of end-to-end communication paths. Unlike the Internet, mobile ad-hoc networks (MANETs) and other forms of traditional networks, message transfers in Delay Tolerant Networks (DTNs) follow the store-carry-and-forward paradigm. It is, therefore, crucial that the nodes in DTNs cooperate among themselves to help the messages reach their respective destinations. Such favorable environments, however, are not obtained in the presence of selfish/malicious nodes. In this chapter, we present a survey of the different schemes proposed in the literature to enforce cooperation in DTNs. We identify the different aspects on which nodes in DTNs could cooperate, and review the different schemes proposed for the same. Specifically, we explore in detail the incentive-based and game theory inspired mechanisms adopted for the same. To the best of our knowledge, no survey on cooperation in DTNs has been presented so far.


Mobile Node Intermediate Node Incentive Scheme Malicious Node Forwarding Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The second author would like to thank TCS for their Fellowship Scheme and generous help, which has partly supported this work.


  1. 1.
    Warthman, F. (2003, Mar.). Delay-tolerant networks (DTNs): a tutorial v1.1. Accessed 08 Oct. 2012.
  2. 2.
    Huffaker, B., Fomenkov, M., Plummer, D., Moore, D., & Claffy, K. (2002). Distance metrics in the Internet. In IEEE international telecommunications symposium (ITS), Sep. 2002 (pp. 200–202). Brazil: IEEE Press. Google Scholar
  3. 3.
    Cerf, V. G. (2008). An interplanetary internet. Space Operations Communicator, 5(4). Google Scholar
  4. 4.
    Mars science laboratory: data rates/returns. Accessed 08 Oct. 2012.
  5. 5.
    Underwater acoustic modem models. Accessed 08 Oct. 2012.
  6. 6.
    Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM ’03) (pp. 27–34). New York: ACM. CrossRefGoogle Scholar
  7. 7.
    Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Travis, E., & Weiss, H. Interplanetary internet (ipn): architectural definition. Accessed 31 Oct. 2012.
  8. 8.
    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257–279. CrossRefGoogle Scholar
  9. 9.
    Khabbaz, M., Assi, C., & Fawaz, W. (2012). Disruption-tolerant networking: a comprehensive survey on recent developments and persisting challenges. IEEE Communications Surveys and Tutorials, 14(2), 607–640. CrossRefGoogle Scholar
  10. 10.
    Huang, C.-M., Lan, K.-c., & Tsai, C.-Z. (2008). A survey of opportunistic networks. In Proceedings of the 22nd international conference on advanced information networking and applications—workshops (AINAW ’08) (pp. 1672–1677). Washington: IEEE Comput. Soc. Google Scholar
  11. 11.
    Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., & Diot, C. (2005). Pocket switched networks and human mobility in conference environments. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (WDTN ’05) (pp. 244–251). New York: ACM. CrossRefGoogle Scholar
  12. 12.
    Saha, B. K., & Misra, S. (2012). Could human intelligence enhance communication opportunities in mission-oriented opportunistic networks. In Proceedings of the 1st ACM MOBICOM workshop on mission-oriented wireless sensor networking (ACM MiSeNet ’12), August 2012 (pp. 15–20). New York: ACM. CrossRefGoogle Scholar
  13. 13.
    Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In T. Imielinski & H. Korth (Eds.), Mobile computing (pp. 153–181). Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  14. 14.
    Bhunia, C. T., Maity, S., Saha, S., Swanaz, S., & Saha, B. K. (2008). Pre-emptive dynamic source routing: a repaired backup approach and stability based DSR with multiple routes. Journal of Computing and Information Technology, 16(2), 91–99. Google Scholar
  15. 15.
    Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. (Tech Report CS-2000-06), Duke University.
  16. 16.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (WDTN ’05) (pp. 252–259). New York: ACM. CrossRefGoogle Scholar
  17. 17.
    Lindgren, A., Doria, A., & Schelén, O. (2004). Probabilistic routing in intermittently connected networks. In P. Dini, P. Lorenz, & J. Souza (Eds.), Lecture notes in computer science: Vol. 3126. Proceedings of the first international workshop on service assurance with partial and intermittent resources (SAPIR) (pp. 239–254). Berlin: Springer. CrossRefGoogle Scholar
  18. 18.
    Scott, K., & Burleigh, S. Bundle protocol specification (Internet RFC 5050), Nov. 2007. Google Scholar
  19. 19.
    Chen, I.-R., Bao, F., Chang, M., & Cho, J.-H. (2010). Trust management for encounter-based routing in delay tolerant networks. In Global telecommunications conference (GLOBECOM 2010), Dec. 2010 (pp. 1–6). New York: IEEE Press. Google Scholar
  20. 20.
    Zhu, H., Lin, X., Lu, R., & Shen, X. S. (2008). A secure incentive scheme for delay tolerant networks. In Proc. 3rd international conference on communications and networking in China (ChinaCom). Google Scholar
  21. 21.
    Shevade, U., Song, H. H., Qiu, L., & Zhang, Y. (2008). Incentive-aware routing in DTNs. In Proceedings of the 16th annual IEEE international conference on network protocols (ICNP 2008). Google Scholar
  22. 22.
    Zhu, H., Lin, X., Lu, R., Fan, Y., & Shen, X. S. (2009). Smart: a secure multilayer credit-based incentive scheme for delay-tolerant networks. IEEE Transactions on Vehicular Technology, 58, 4628–4639. CrossRefGoogle Scholar
  23. 23.
    Chen, B. B., & Chan, M. C. (2010). Mobicent: a credit-based incentive system for disruption tolerant network. In Proceedings of INFOCOM. Google Scholar
  24. 24.
    Lu, R., Lin, X., Zhu, H., Shen, X. S., & Preiss, B. (2010). Pi: a practical incentive protocol for delay tolerant networks. IEEE Transactions on Wireless Communications, 9(4), 1483–1493. CrossRefGoogle Scholar
  25. 25.
    Mahmoud, M. E., Barua, M., & Shen, X. (2011). Sats: secure data-forwarding scheme for delay-tolerant wireless networks. In GLOBECOM. Google Scholar
  26. 26.
    Li, Y., Hui, P., Jin, D., Su, L., & Zeng, L. (2010). Evaluating the impact of social selfishness on the epidemic routing in delay tolerant networks. IEEE Communications Letters, 14, 1026–1028. CrossRefGoogle Scholar
  27. 27.
    Wei, L., Zhu, H., Cao, Z., & Shen, X. (2011). Mobiid: a user-centric and social-aware reputation based incentive scheme for delay/disruption tolerant networks. In Proceedings of the 10th international conference on ad-hoc, mobile, and wireless networks, ADHOC-NOW’11 (pp. 177–190). Berlin: Springer. CrossRefGoogle Scholar
  28. 28.
    Zhang, X., Wang, X., Liu, A., Zhang, Q., & Tang, C. (2012). Pri: a practical reputation-based incentive scheme for delay tolerant networks. KSII Transactions on Internet and Information Systems, 6(4), 973–988. Google Scholar
  29. 29.
    Balasubramanian, A., Levine, B. N., & Venkataramani, A. (2007). DTN routing as a resource allocation problem. In Proc. ACM SIGCOMM. Google Scholar
  30. 30.
    Haas, Z. J., & Small, T. (2006). Evaluating the capacity of resource-constrained DTNs. In Proceedings of the 2006 international conference on wireless communications and mobile computing (IWCMC ’06). Google Scholar
  31. 31.
    Osborne, M. J. (2003). An introduction to game theory. Oxford: Oxford University Press. Google Scholar
  32. 32.
    Buttyán, L., Dóra, L., Félegyházi, M., & Vajda, I. (2007). Barter-based cooperation in delay-tolerant personal wireless networks. In Proceedings of the IEEE workshop on autonomic and opportunistic communications (AOC 2007). Google Scholar
  33. 33.
    Buttyán, L., Dóra, L., Félegyházi, M., & Vajda, I. (2010). Barter trade improves message delivery in opportunistic networks. Ad Hoc Networks, 8, 1–14. CrossRefGoogle Scholar
  34. 34.
    Yin, L., mei Lu, H., da Cao, Y., & min Gao, J. (2010). Cooperation in delay tolerant networks. In 2nd international conference on signal processing systems (ICSPS). Google Scholar
  35. 35.
    Niyato, D., Wang, P., Saad, W., & Hjørungnes, A. (2010). Coalition formation games for improving data delivery in delay tolerant networks. In GLOBECOM’10. Google Scholar
  36. 36.
    Saad, W., Han, Z., Debbah, M., Hjørungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks: a tutorial. IEEE Signal Processing Magazine, 26, 77–97. arXiv:0905.4057. CrossRefGoogle Scholar
  37. 37.
    Panagakis, A., Vaios, A., & Stavrakakis, I. (2007). On the effects of cooperation in DTNs. In 2nd international conference on communication systems software and middleware (COMSWARE). Google Scholar
  38. 38.
    Resta, G., & Santi, P. (2009). The effects of node cooperation level on routing performance in delay tolerant networks. In Proceedings IEEE SECON. Google Scholar
  39. 39.
    Resta, G., & Santi, P. (2012). A framework for routing performance analysis in delay tolerant networks with application to noncooperative networks. IEEE Transactions on Parallel and Distributed Systems, 23, 2–10. CrossRefGoogle Scholar
  40. 40.
    Keränen, A., Pitkänen, M., Vuori, M., & Ott, J. (2011). Effect of non-cooperative nodes in mobile DTNs. In World of wireless, mobile and multimedia networks (WoWMoM). Google Scholar
  41. 41.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., & Chong, S. (2009). CRAWDAD data set ncsu/mobilitymodels (v. 2009-07-23).
  42. 42.
    Li, Y., Su, G., & Wang, Z. (2012). Evaluating the effects of node cooperation on DTNs routing. AEÜ. International Journal of Electronics and Communications, 66, 62–67. CrossRefGoogle Scholar
  43. 43.
    Li, Y., Su, L., Jin, D., & Zeng, L. (2011). Performance evaluation of multicasting in energy-constrained DTN with selfish nodes. In Global telecommunications conference (GLOBECOM 2011), Dec. 2011 (pp. 1–5). New York: IEEE Press. Google Scholar
  44. 44.
    Li, Y., Su, G., Wu, D., Jin, D., Su, L., & Zeng, L. (2011). The impact of node selfishness on multicasting in delay tolerant networks. IEEE Transactions on Vehicular Technology, 60(5), 2224–2238. CrossRefGoogle Scholar
  45. 45.
    Nguyen, A.-D., Sénac, P., & Diaz, M. (2010). STIgmergy Routing (STIR) for content-centric delay-tolerant networks. In LAWDN—Latin-American workshop on dynamic networks, Buenos Aires, Argentine. Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Information TechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations