Graph-Based Visualisation of High Dimensional Data

  • Ágnes Vathy-Fogarassy
  • János Abonyi
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter we give an overview of classical dimensionality reduction and graph based visualisation methods that are able to uncover hidden structure of high dimensional data and visualise it in a low-dimensional vector space.


Geodesic Distance Dimensionality Reduction Method Well Match Unit Codebook Vector Sammon Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tukey, J.: Exploratory Data Analysis. Addison-Wesley, New York (1977)MATHGoogle Scholar
  2. 2.
    McQueen, J.: Some methods for classification and analysis of multivariate observations. Proceedings of fifth Berkeley symposium on mathematical statistics and probability, pp. 281–297 (1967)Google Scholar
  3. 3.
    Martinetz, T.M., Shulten, K.J.: A neural-gas network learns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402. Elsevier Science Publishers B.V, North-Holland (1991)Google Scholar
  4. 4.
    Johannes, M., Brase, J.C., Fröhlich, H., Gade, S., Gehrmann, M., Fälth, M., Sültmann, H., Beißbarth, T.: Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 26(17), 2136–2144 (2010)CrossRefGoogle Scholar
  5. 5.
    Lai, C., Reinders, M.J.T., Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognit. Lett. 27(10), 1067–1076 (2006)CrossRefGoogle Scholar
  6. 6.
    Nguyen, M.H., de la Torre, F.: Optimal feature selection for support vector machines. Pattern Recognit. 43(3), 584–591 (2010)MATHCrossRefGoogle Scholar
  7. 7.
    Rong, J., Li, G., Chen, Y.P.P.: Acoustic feature selection for automatic emotion recognition from speech. Inf. Process. Manag. 45(3), 315–328 (2009)CrossRefGoogle Scholar
  8. 8.
    Tsang, I.W., Kocsor, A., Kwok, J.T.: Efficient kernel feature extraction for massive data sets. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 724–729 (2006)Google Scholar
  9. 9.
    Wang, J., Zhang, B., Wang, S., Qi, M., Kong, J.: An adaptively weighted sub-pattern locality preserving projection for face recognition. J. Netw. Comput. Appl. 332(3), 323–332 (2010)CrossRefGoogle Scholar
  10. 10.
    Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(12), 245271 (1997)MathSciNetGoogle Scholar
  11. 11.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  12. 12.
    Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 192, 153–158 (1997)CrossRefGoogle Scholar
  13. 13.
    Weston, J., et al.: Feature selection for SVMs. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 668–674. The MIT Press, Cambride (2001)Google Scholar
  14. 14.
    Narendra, P., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. C–26(9), 917–922 (1977)CrossRefGoogle Scholar
  15. 15.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15(1), 1119–1125 (1994)CrossRefGoogle Scholar
  16. 16.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)CrossRefGoogle Scholar
  17. 17.
    Jolliffe, T.: Principal Component Analysis. Springer, New York (1996)Google Scholar
  18. 18.
    Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Trans. Comput. 18(5), 401–409 (1969)CrossRefGoogle Scholar
  19. 19.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  20. 20.
    Comon, P.: Independent component analysis: a new concept? Signal Process. 36(3), 287–317 (1994)MATHCrossRefGoogle Scholar
  21. 21.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)CrossRefGoogle Scholar
  22. 22.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, New York (2001)MATHCrossRefGoogle Scholar
  24. 24.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  25. 25.
    Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)MathSciNetGoogle Scholar
  26. 26.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)MATHCrossRefGoogle Scholar
  27. 27.
    Borg, I.: Modern multidimensional scaling: theory and applications. Springer, New York (1977)Google Scholar
  28. 28.
    Kruskal, J.B., Carroll, J.D.: Geometrical models and badness-of-fit functions. In: Krishnaiah, R. (ed.) Multivariate Analysis II, vol. 2, pp. 639–671. Academic Press Pachuri, New York (1969)Google Scholar
  29. 29.
    Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, J., Castrén, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4, 48 (2003)CrossRefGoogle Scholar
  30. 30.
    Venna, J., Kaski, S.: Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity, In: Proceedings of the workshop on self-organizing maps, pp. 695–702 (2005)Google Scholar
  31. 31.
    Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19(6), 889–899 (2006)MATHCrossRefGoogle Scholar
  32. 32.
    Kiviluoto, K.: Topology preservation in self-organizing maps. Proceedings of IEEE international conference on neural networks, pp. 294–299 (1996)Google Scholar
  33. 33.
    Bauer, H.U., Pawelzik, K.R.: Quantifying the neighborhood preservation of selforganizing feature maps. IEEE Trans. Neural Netw. 3(4), 570–579 (1992)CrossRefGoogle Scholar
  34. 34.
    Duda, R.O., Hart, P.E., Stork, D.: Pattern classification. Wiley, New York (2000)Google Scholar
  35. 35.
    Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. In: Advances in neural information processing systems, vol. 11, Cambridge, USA (1999)Google Scholar
  36. 36.
    Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  37. 37.
    Mao, J., Jain, A.K.: Artifical neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Netw 6(2), 629–637 (1995)Google Scholar
  38. 38.
    Pal, N.R., Eluri, V.K.: Two efficient connectionist schemes for structure preserving dimensionality reduction. IEEE Trans. Neural Netw. 9, 1143–1153 (1998)CrossRefGoogle Scholar
  39. 39.
    Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)MATHCrossRefGoogle Scholar
  40. 40.
    Naud, A.: Neural and statistical methods for the visualization of multidimensional data. Technical Science Katedra Metod Komputerowych Uniwersytet Mikoaja Kopernika w Toruniu (2001)Google Scholar
  41. 41.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1–29 (1964)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    He, X., Niyogi, P.: Locality preserving projections. In: Lawrence, K., Saul, Weiss, Y., Bottou, L., (eds.) Advances in Neural Information Processing Systems 17. Proceedings of the 2004 Conference, MIT Press, vol. 16, p. 37 (2004)
  43. 43.
    UC Irvine Machine Learning Repository mlearn/ Cited 15 Oct 2012Google Scholar
  44. 44.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  45. 45.
    Ultsch, A.: Self-organization neural networks for visualization and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 307–313. Springer, Berlin (1993)CrossRefGoogle Scholar
  46. 46.
    Blackmore, J., Miikkulainen, R.: Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In: Proceedong on IEEE international conference on neural networks, vol. 1, pp. 450–455 (1993)Google Scholar
  47. 47.
    Merkl, D., He, S.H., Dittenbach, M., Rauber, A.: Adaptive hierarchical incremental grid growing: an architecture for high-dimensional data visualization. In: Proceeding of the workshop on SOM, Advances in SOM, pp. 293–298 (2003)Google Scholar
  48. 48.
    Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method. Proceedings of ESANN’2000, 8th european symposium on artificial, neural networks, pp. 13–20 (2000)Google Scholar
  49. 49.
    Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Netw. 19, 923–934 (2006)MATHCrossRefGoogle Scholar
  50. 50.
    Estévez, P.A., Chong, A.M., Held, C.M., Perez, C.A.: Nonlinear projection using geodesic distances and the neural gas network. Lect. Notes Comput. Sci. 4131, 464–473 (2006)CrossRefGoogle Scholar
  51. 51.
    Wu, Y., Chan, K.L.: An extended isomap algorithm for learning multi-class manifold. Proceeding of IEEE international conference on machine learning and, cybernetics (ICMLC2004), vol. 6, pp. 3429–3433 (2004)Google Scholar
  52. 52.
    Lee, J.A., Verleysen, M.: Nonlinear projection with the isotop method. Proceedings of ICANN’2002, international conference on artificial, neural networks, pp. 933–938 (2002)Google Scholar
  53. 53.
    Lee, J.A., Archambeau, C., Verleysen, M.: Locally linear embedding versus isotop. In: ESANN’2003 proceedings: European symposium on artificial neural networks Bruges (Belgium), pp. 527–534 (2003)Google Scholar
  54. 54.
    Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8, 148–154 (1997)CrossRefGoogle Scholar
  55. 55.
    Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear distance analysis versus isomap. Proceedings of ESANN’2002, 10th European symposium on artificial, neural networks, pp. 185–192 (2000)Google Scholar
  56. 56.
    Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)CrossRefGoogle Scholar
  57. 57.
    Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology representing network map—a new tool for visualization of high-dimensional data. Trans. Comput. Sci. I. 4750, 61–84 (2008) (Springer)Google Scholar
  58. 58.
    Vathy-Fogarassy, A., Abonyi, J.: Local and global mappings of topology representing networks. Inf. Sci. 179, 3791–3803 (2009)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)CrossRefGoogle Scholar

Copyright information

© János Abonyi 2013

Authors and Affiliations

  1. 1.Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  2. 2.Department of Process EngineeringUniversity of PannoniaVeszprémHungary

Personalised recommendations