Cognition: Memory, Attention, and Learning

  • Frank E. RitterEmail author
  • Gordon D. Baxter
  • Elizabeth F. Churchill


Memory, attention, learning are intertwined in the user’s cognitive processing. These are the basic mechanisms of the user’s cognitive architecture and thus provide the basis for cognition. Users have several types of memory that are important for computer use. Attention can be seen as the set of items being processed at the same time and how they are being processed. If there are more items stored in memory or the items in memory are better organized these effects will improve performance and provide the appearance of more attention. Users also learn constantly. The effects of learning lead to more items being stored in memory and allow the user to attend to more aspects of a task.


Prospective Memory Implicit Learning Declarative Memory Declarative Knowledge Procedural Skill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.CrossRefGoogle Scholar
  2. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
  3. Anderson, J. R. (1995). Learning and memory. New York, NY: Wiley.Google Scholar
  4. Anderson, J. R. (2004). Cognitive psychology and its implications (5th ed.). New York, NY: Worth Publishers.Google Scholar
  5. Anderson, J. R. (2007). How can the human mind exist in the physical universe?. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  6. Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive Science, 13(4), 467–505.CrossRefGoogle Scholar
  7. Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.Google Scholar
  8. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2). New York, NY: Academic Press.Google Scholar
  9. Baddeley, A. D. (1976). The psychology of memory. New York: Basic Books.Google Scholar
  10. Baddeley, A. D. (1986). Working memory. Oxford, UK: Oxford University Press.Google Scholar
  11. Bailey, B. P., & Konstan, J. A. (2001). The effects of interruptions on task performance: Annoyance, and anxiety in the user interface. In Interact, 2001 (pp. 593–601).Google Scholar
  12. Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6), 770–775.CrossRefGoogle Scholar
  13. Baxter, G., Rooksby, J., Whang, Y., & Kahajeh-Hosseine, A. (2012). The ironies of automation… still going strong at 30? In Proceedings of ECCE 2012 Conference (pp. 65–71). Edinburgh, North Britain.Google Scholar
  14. Card, S. K., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.Google Scholar
  15. Charness, N., Holley, P., Feddon, J., & Jastrzembski, T. (2004). Light pen use and practice minimize age and hand performance differences in pointing tasks. Human Factors, 46(3), 373–384.CrossRefGoogle Scholar
  16. Chilton, E. (1996). What was the subject of Titchner’s doctoral thesis? SigCHI Bulletin, 28(2), 96.Google Scholar
  17. Christou, G., Ritter, F. E., & Jacob, R. J. K. (2009). Knowledge-based usability evaluation for reality-based interaction. In G. Christou, E. L.-C. Law, W. Green & K. Hornbaek (Eds.), Challenges in the evaluation of usability and user experience in reality-based interaction (workshop proceedings). At CHI 2009 Conference on Human Factors in Computing Systems, Boston, MA, 2009. CHI 2009 Workshop: Challenges in Evaluating Usability and User Experience in Reality Based Interaction (pp. 36–39). Toulouse, France: IRIT Press.Google Scholar
  18. Corbett, A. T., & Anderson, J. R. (1990). The effect of feedback control on learning to program with the LISP tutor. In Proceedings of the 12th Annual Conference of the Cognitive Science Society (pp. 796–803). Erlbaum: Hillsdale, NJ.Google Scholar
  19. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.CrossRefGoogle Scholar
  20. Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (1998). The strategy specific nature of improvement: The power law applies by strategy within task. Psychological Science, 9(1), 1–8.CrossRefGoogle Scholar
  21. Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23.CrossRefMathSciNetGoogle Scholar
  22. Ericsson, K. A. (Ed.). (1996). The road to excellence: The acquisition of expert performance in the arts and sciences. Mahwah, NJ: Erlbaum.Google Scholar
  23. Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208, 1181–1182.CrossRefGoogle Scholar
  24. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.CrossRefGoogle Scholar
  25. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  26. Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of human learning (pp. 243–285). New York, NY: Academic Press.Google Scholar
  27. Golightly, D., Hone, K. S., & Ritter, F. E. (1999). Speech interaction can support problem solving. In Human-Computer InteractionInteract ‘99 (pp. 149–155). IOS Press.Google Scholar
  28. Hayes, J. R. (1981). The complete problem solver. Philadelphia: The Franklin Institute Press.Google Scholar
  29. Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185–207.CrossRefGoogle Scholar
  30. Intons-Peterson, M. J., & Best, D. L. (1998). Introduction and brief history of memory distortions and their prevention. In M. J. Intons-Peterson & D. L. Best (Eds.), Memory distortions and their prevention. Mahwah, NJ: Erlbaum.Google Scholar
  31. Jensen, M. B., & Healy, A. F. (1998). Retention of procedural and declarative information from the Colorado Driver’s Manual. In M. J. Intons-Peterson & D. L. Best (Eds.), Memory distortions and their prevention (pp. 113–124). Mahwah, NJ: Erlbaum.Google Scholar
  32. Kaplan, C. (1989). Hatching a Theory of Incubation: Does putting a problem aside really help? If so, why?, Carnegie-Mellon University, University Microfilms International, Catalog #9238813.Google Scholar
  33. Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user complexity. International Journal of Man-Machine Studies, 22, 365–394.CrossRefGoogle Scholar
  34. Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based on the EPIC architecture for a multimodal high-performance human-computer interaction task. Transactions on Computer-Human Interaction, 4(3), 230–275.CrossRefGoogle Scholar
  35. Kim, J. W., Ritter, F. E., & Koubek, R. J. (2013). An integrated theory for improved skill acquisition and retention in the three stages of learning. Theoretical Issues in Ergonomics Science, 14(1), 22–37.CrossRefGoogle Scholar
  36. Larkin, J. H. (1981). Enriching formal knowledge: A model for learning to solve textbook physics problems. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 311–334). Hillsdale, NJ: Erlbaum.Google Scholar
  37. Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980a). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.CrossRefGoogle Scholar
  38. Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980b). Models of competence in solving physics problems. Cognitive Science, 4, 317–345.CrossRefGoogle Scholar
  39. Lindsay, P. H., & Norman, D. A. (1977). Human information processing (2nd). San Diego, CA: Harcourt Brace Jovanovich.Google Scholar
  40. Loftus, E. F. (1975). Leading questions and the eyewitness report. Cognitive Psychology, 7, 560–572.CrossRefGoogle Scholar
  41. Loftus, E. F. (2003). Our changeable memories: Legal and practical implications. Nature Reviews Neuroscience, 4, 231–234.CrossRefGoogle Scholar
  42. Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000). A source activation theory of working memory: Cross-task prediction of performance in ACT-R. Journal of Cognitive Systems Research, 1, 99–118.CrossRefGoogle Scholar
  43. McFarlane, D. C. (1997). Interruption of people in human-computer interaction: A general unifying definition of human interruption and taxonomy (Tech Report No. NRL/FR/5510–97-9870): Naval Research Laboratory. (also at Scholar
  44. McFarlane, D. C. (1999). Coordinating the interruption of people in human-computer interaction. In INTERACT ‘99 (pp. 295–303). IOS Press.Google Scholar
  45. Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3–65.CrossRefGoogle Scholar
  46. Miller, G. A. (1956). The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.CrossRefGoogle Scholar
  47. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  48. Nickerson, R. (1969). Man-Computer interaction: A challenge for human factors research. Ergonomics, 12 (pp. 501–517). (Reprinted in 1969 in IEEE Transactions on Man-Machine Systems, 10(4), 164–180).Google Scholar
  49. Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15.CrossRefMathSciNetGoogle Scholar
  50. O’Hara, K., & Payne, S. J. (1998). Effects of operator implementation cost on performance of problem solving and learning. Cognitive Psychology, 35, 34–70.CrossRefGoogle Scholar
  51. Ohlsson, S. (1992). The learning curve for writing books: Evidence from Professor Asimov. Psychological Science, 3(6), 380–382.CrossRefGoogle Scholar
  52. Ohlsson, S. (2008). Computational models of skill acquisition. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 359–395). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Rabbitt, P., & Banerji, N. (1989). How does very prolonged practice improve decision speed? Journal of Experimental Psychology: General, 118, 338–345.CrossRefGoogle Scholar
  54. Raskin, J. (2000). The humane interface. Boston, MA: Addison-Wesley.Google Scholar
  55. Rasmussen, J. (1983). Skills, rules, knowledge: Signals, signs and symbols and other distinctions in human performance models. IEEE Transactions: Systems, Man, & Cybernetics, SMC-13, 257–267.Google Scholar
  56. Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  57. Ritter, F. E., & Feurzeig, W. (1988). Teaching real-time tactical thinking. In J. Psotka, L. D. Massey, & S. A. Mutter (Eds.), Intelligent tutoring systems: Lessons learned (pp. 285–301). Hillsdale, NJ: Erlbaum.Google Scholar
  58. Ritter, F. E., & Schooler, L. J. (2001). The learning curve. In W. Kintch, N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 13, pp. 8602–8605). Amsterdam: Pergamon.CrossRefGoogle Scholar
  59. Seibel, R. (1963). Discrimination reaction time for a 1,023-alternative task. Journal of Experimental Psychology, 66(3), 215–226.Google Scholar
  60. Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117(3), 258–275.CrossRefGoogle Scholar
  61. Simon, H. A. (1974). How big is a chunk? Science, 183, 482–488.CrossRefGoogle Scholar
  62. Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist, 61(393–403), FIND.Google Scholar
  63. Simonton, D. K. (1996). Creative expertise: A life-span developmental perspective. In K. A. Ericsson (Ed.), The road to excellence: The acquisition of expert performance in the arts and sciences (pp. 227–253). Mahwah, NJ: Erlbaum.Google Scholar
  64. Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard University Press.Google Scholar
  65. Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1–36.CrossRefGoogle Scholar
  66. Sperling, G. A. (1961). The information available in brief visual presentations. Psychological Monographs, 74(whole No. 498).Google Scholar
  67. Suchman, L. (1983). Office procedures as practical action: Models of work and system design. ACM Transactions on Office Information Systems, 1, 320–328.Google Scholar
  68. Thomas, E. L., & Robinson, H. A. (1972). Improving reading in every class: A sourcebook for teachers. Boston, MA: Allyn & Bacon.Google Scholar
  69. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1–25.CrossRefGoogle Scholar
  70. Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance (3rd ed.). Prentice-Hall: Upper Saddle River, NJ.Google Scholar
  71. Woods, D. D., & Patterson, E. E. (2001). How unexpected events produce an escalation of cognitive and coordinative demands. In P. A. Hancock & P. A. Desmond (Eds.), Stress, workload, and fatigue (pp. 290–302). Mahwah, NJ: Erlbaum.Google Scholar
  72. Zhang, G., & Simon, H. A. (1985). STM capacity for Chinese words and idioms: Chunking and acoustical loop hypotheses. Memory and Cognition, 13(3), 193–201.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Frank E. Ritter
    • 1
    Email author
  • Gordon D. Baxter
    • 2
  • Elizabeth F. Churchill
    • 3
  1. 1.College of ISTThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK
  3. 3.eBay Research LabsSan JoseUSA

Personalised recommendations