Skip to main content

Introducing User-Centered Systems Design

  • Chapter
  • First Online:
Book cover Foundations for Designing User-Centered Systems

Abstract

If designers and developers want to design better technologies that are intended for human use they need to have a good understanding of the people who are or who will be using their systems. Understanding people, their characteristics, capabilities, commonalities, and differences allows designers to create more effective, safer, efficient, and enjoyable systems. This book provides readers with resources for thinking about people—commonly called “users”—their tasks and the context in which they perform those tasks. Our intention is to enable you to make more informed decisions when designing complex interactive systems. This chapter thus introduces this argument through example design problems. We then present the benefits and costs associated with understanding the user. Two approaches for understanding users are introduced. The first is a framework called the ABCS for understanding, in broad strokes, different aspects of users. The second is user knowledge and action simulation for developing and testing how users approach tasks in more detail. After reading this chapter you should be able to appreciate why it is important to understand users, and the associated benefits and costs of doing so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.tedwilliams.com/index.php?page=burnjet

  2. 2.

    Also published sometimes as The psychology of everyday things.

  3. 3.

    A millisecond is a thousandth of a second, and is abbreviated ms.

References

  • Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

    Article  Google Scholar 

  • Baxter, G. D., Monk, A. F., Tan, K., Dear, P. R. F., & Newell, S. J. (2005). Using cognitive task analysis to facilitate the integration of decision support systems into the neonatal intensive care unit. Artificial Intelligence in Medicine, 35, 243–257.

    Article  Google Scholar 

  • Boff, K. R., & Lincoln, J. E. (Eds.). (1988). Engineering data compendium (User’s guide). Wright-Patterson Air Force Base, OH: Harry G. Armstrong Aerospace Medical Research Laboratory.

    Google Scholar 

  • Booher, H. R., & Minninger, J. (2003). Human systems integration in army systems acquisition. In H. R. Booher (Ed.), Handbook of human systems integration (pp. 663–698). Hoboken, NJ: John Wiley.

    Chapter  Google Scholar 

  • Brown, C. M. L. (1988). Human-computer interface design guidelines. Norwood, NJ: Ablex.

    Google Scholar 

  • Bruce, V., Gilmore, D., Mason, L., & Mayhew, P. (1983). Factors affecting the perceived value of coins. Journal of Economic Psychology, 4(4), 335–347.

    Article  Google Scholar 

  • Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. International Journal of Human-Computer Studies, 55(1), 41–84.

    Article  MATH  Google Scholar 

  • Casper, J., & Murphy, R. (2003). Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man, and Cybernetics Part B, 33(3), 367–385.

    Google Scholar 

  • Chapanis, A., & Lindenbaum, L. E. (1959). A reaction time study of four control-display linkages. Human Factors, 1(4), 1–7.

    Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Fitts, P. M. (1951). Engineering psychology and equipment design. In S. S. Stevens (Ed.), Handbook of experimental psychology (pp. 1287–1340). New York, NY: John Wiley.

    Google Scholar 

  • Flowers, S. (1997). Software failure: Management failure… Amazing stories and cautionary tales. New York, NY: Wiley.

    Google Scholar 

  • Freed, M., & Remington, R. (2000). Making human-machine system simulation a practical engineering tool: An APEX overview. In Proceedings of the 3rd International Conference on Cognitive Modelling (pp. 110–117). Veenendaal, The Netherlands: Universal Press.

    Google Scholar 

  • Gigerenzer, G. (2004). Dread risk, september 11, and fatal traffic accidents. Psychological Science, 15(4), 286–287.

    Article  Google Scholar 

  • Glushko, R. J., & Tabas, L. (2009). Designing service systems by bridging the “front stage” and “back stage”. Information Systems and e-Business Management, 7(4), 407–427.

    Article  Google Scholar 

  • Gray, W. D., John, B. E., & Atwood, M. E. (1992). The precis of project Ernestine or an overview of a validation of GOMS. In Proceedings of the CHI‘92 Conference on Human Factors in Computer Systems. New York, NY: ACM Press.

    Google Scholar 

  • Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a GOMS analysis for predicting and explaining real-world task performance. Human-Computer Interaction, 8(3), 237–309.

    Article  Google Scholar 

  • Helander, M. G., & Tham, M. P. (2003). Hedonomics: Affective human factors design. Ergonomics, 46(13/14), 1269–1272.

    Article  Google Scholar 

  • Holmes, N. (2005). The Internet, the Web, and the Chaos. IEEE Computer, 38(108), 106–107.

    Google Scholar 

  • Johnson, E. J., Bellman, S., & Lohse, G. L. (2003). Cognitive lock-in and the power law of practice. Journal of Marketing, 67, 62–75.

    Article  Google Scholar 

  • Jones, G., Ritter, F. E., & Wood, D. J. (2000). Using a cognitive architecture to examine what develops. Psychological Science, 11(2), 93–100.

    Article  Google Scholar 

  • Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27–41.

    Google Scholar 

  • Jordan, P. W. (2000). Designing pleasurable products. London: Taylor & Francis.

    Book  Google Scholar 

  • Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based on the EPIC architecture for a multimodal high-performance human-computer interaction task. Transactions on Computer-Human Interaction, 4(3), 230–275.

    Article  Google Scholar 

  • Kosslyn, S. M. (2007). Clear and to the point: 8 psychological principles for creating compelling Powerpoint presentations. New York, NY: Oxford University Press.

    Google Scholar 

  • Laird, J. E., & van Lent, M. (2001). Human-level AI’s killer application: Interactive computer games. AI Magazine, 22(2), 15–26.

    Google Scholar 

  • Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25 accidents. IEEE Computer, 26(7), 18–41.

    Article  Google Scholar 

  • Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000). A source activation theory of working memory: Cross-task prediction of performance in ACT-R. Journal of Cognitive Systems Research, 1, 99–118.

    Article  Google Scholar 

  • Masson, M. (1991). Understanding, reporting and preventing human fixation errors. In T. W. v. d. Schaaf, D. A. Lucas & A. Hale (Eds.), Near miss reporting as a safety tool (pp. 35–50). Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Nickerson, R. S., & Adams, M. J. (1979). Long-term memory for a common object. Cognitive Psychology, 11, 287–307.

    Article  Google Scholar 

  • Nielsen, J. (1993). Usability engineering. Chestnut Hill, MA: AP Professional Press.

    MATH  Google Scholar 

  • Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15.

    Article  MathSciNet  Google Scholar 

  • Norman, D. A. (2006). Emotional design: Why we love (or hate) everyday things. New York, NY: Basic Books.

    Google Scholar 

  • Norman, D. A. (2009). The design of future things. New York, NY: Basic Books.

    Google Scholar 

  • Norman, D. A. (2013). The design of everyday things. NY: Basic Books.

    Google Scholar 

  • Payne, S. J. (1995). Naive judgments of stimulus-response compatibility. Human Factors, 37, 495–506.

    Article  Google Scholar 

  • Petroski, H. (1985/1992). To engineer is human: The role of failure in successful design. New York, NY: Vintage Books.

    Google Scholar 

  • Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system integration in the system development process: A new look. Washington, DC: National Academies Press. http://books.nap.edu/catalog.php?record_id=11893. Accessed 10 March 2014.

  • Pheasant, S., & Haslegrave, C. M. (2006). Bodyspace: Anthropometry, ergonomics, and the design of work (3rd ed.). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Preece, J., Rogers, Y., & Sharp, H. (2002). Interaction design. New York, NY: Wiley.

    Google Scholar 

  • Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Ritter, F. E., Freed, A. R., & Haskett, O. L. (2005). User information needs: The case of university department web sites. ACM interactions, 12(5), 19–27. acs.ist.psu.edu/acs-lab/reports/ritterFH02.pdf.

  • Salvendy, G. (Ed.). (1997). Handbook of human factors and ergonomics (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  • Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J. E., Rosenbloom, P. S., et al. (1995). Intelligent agents for interactive simulation environments. AI Magazine, 16(1), 15–40.

    Google Scholar 

  • Tractinsky, N. (1997). Aesthetics and apparent usability: Empirically assessing cultural and methodological issues. In CHI ‘97 (pp. 115–122). New York, NY: ACM. http://sigchi.org/chi97/proceedings/paper/nt.htm. Accessed 11 March 2014.

  • Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Weiland, W., Szczepkowski, M., Urban, G., Mitchell, T., Lyons, D., & Soles, R. (2002). Reusing cognitive models: Leveraging SCOTT technology in an LCAC virtual training environment. In Proceedings of the 11th Computer Generated Forces Conference, 02-CGF-115. Orlando, FL: U. of Central Florida.

    Google Scholar 

  • White, A. W. (2002). The elements of graphic design: Space, unity, page architecture, and type. New York, NY: Allworth Press.

    Google Scholar 

  • Wickens, C. D., Gordon, S. E., & Liu, Y. (1998). An introduction to human factors engineering. New York, NY: Addison-Wesley.

    Google Scholar 

  • Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Ritter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ritter, F.E., Baxter, G.D., Churchill, E.F. (2014). Introducing User-Centered Systems Design. In: Foundations for Designing User-Centered Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5134-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5134-0_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5133-3

  • Online ISBN: 978-1-4471-5134-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics