Methodology I: Task Analysis



Task analysis (TA) is a useful tool for describing and understanding how people perform particular tasks. Task analyses can be used for several purposes ranging from describing behavior to helping decide how to allocate tasks to a team. There are several methods of TA that can be used to describe the user’s tasks at different levels of abstraction. We describe some of the most commonly used methods and illustrate the use of TA with some example applications of TA. TA is widely used but when using TA there are considerations to keep in mind such as the fact that many approaches require an initial interface or specification, and that many do not include context multiple users or ranges of users. These considerations help describe where and when TA can be successfully applied and where TA will be extended in the future.


Task Analysis Safety Critical System Cognitive Task Analysis Unit Task Prescriptive Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, A. E., Rogers, W. A., & Fisk, A. D. (2012). Choosing the right task analysis tool. Ergonomics in Design: The Quarterly of Human Factors Applications, 20(4), 4–10.CrossRefGoogle Scholar
  2. Annett, J. (2005). Hierarchical task analysis (HTA). In N. Stanton, A. Hedge, K. Brookhuis, E. Salas & H. Hendrick (Eds.), Handbook of human factors and ergonomics methods (pp. 33-31–33-37). Boca Raton, FL: CRC Press.Google Scholar
  3. Baxter, G. D., Monk, A. F., Tan, K., Dear, P. R. F., & Newell, S. J. (2005). Using cognitive task analysis to facilitate the integration of decision support systems into the neonatal intensive care unit. Artificial Intelligence in Medicine, 35, 243–257.CrossRefGoogle Scholar
  4. Beard, D. V., Smith, D. K., & Denelsbeck, K. M. (1996). Quick and dirty GOMS: A case study of computed tomography interpretation. Human-Computer Interaction, 11, 157–180.CrossRefGoogle Scholar
  5. Beevis, D. (Ed.). (1999). Analysis techniques for human-machine systems design: A report produced under the auspices of NATO Defence Research Group Panel 8. Wright-Patterson Air Force Base, OH: Crew Systems Ergonomics/Human Systems Technology Information Analysis Center.Google Scholar
  6. Bertelsen, O. W., & Bødker, S. (2003). Activity theory. In J. M. Carroll (Ed.), HCI models, theories and frameworks: Toward a multi-disciplinary science. San Francisco, CA: Morgan Kaufmann.Google Scholar
  7. Booher, H. R., & Minninger, J. (2003). Human systems integration in Army systems acquisition. In H. R. Booher (Ed.), Handbook of human systems integration (pp. 663–698). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  8. Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance of text-editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5, 1–48.CrossRefGoogle Scholar
  9. Byrne, M. D., & Kirlik, A. (2005). Using computational cognitive modeling to diagnose possible sources of aviation error. International Journal of Aviation Psychology, 15(2), 135–155.CrossRefGoogle Scholar
  10. Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. Communications of the ACM, 23(7), 396–410.CrossRefGoogle Scholar
  11. Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.Google Scholar
  12. Casey, S. M. (1998). Set phasers on stun: And other true tales of design, technology, and human error. Santa Barbara, CA: Aegean.Google Scholar
  13. Casey, S. M. (2006). The Atomic Chef: And other true tales of design, technology, and human error. Santa Barbara, CA: Aegean.Google Scholar
  14. Chipman, S. F., & Kieras, D. E. (2004). Operator centered design of ship systems. In Engineering the Total Ship Symposium. NIST, Gaithersburg, MD. American Society of Naval Engineers. Retrieved March 10, 2014, from
  15. Crandall, B., Klein, G., & Hoffman, R. R. (2006). Working minds: A practitioner’s guide to cognitive task analysis. Cambridge, MA: MIT Press.Google Scholar
  16. Diaper, D. (2004). Understanding task analysis. In D. Diaper & N. Stanton (Eds.), The handbook of task analysis for human-computer interaction (pp. 5–47). Mahwah, NJ: LEA.Google Scholar
  17. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  18. Fitts, P. M. (1951). Human engineering for an effective air navigation and traffic control system. Washington, DC: National Research Council.Google Scholar
  19. Freed, M., & Remington, R. (1998). A conceptual framework for predicting error in complex human-machine environments. In Proceedings of the 20th Annual Conference of the Cognitive Science Society (pp. 356–361). Mahwah, NJ: Erlbaum.Google Scholar
  20. Gray, W. D., John, B. E., & Atwood, M. E. (1992). The precis of project ernestine or an overview of a validation of GOMS. In Proceedings of the CHI‘92 Conference on Human Factors in Computer Systems. New York, NY: ACM Press.Google Scholar
  21. John, B. E., & Kieras, D. E. (1996a). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4), 320–351.CrossRefGoogle Scholar
  22. John, B. E., & Kieras, D. E. (1996b). Using GOMS for user interface design and evaluation: Which technique? ACM Transactions on Computer-Human Interaction, 3(4), 287–319.CrossRefGoogle Scholar
  23. Kieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and GLEAN3: AI Lab, University of Michigan. Available from
  24. Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user complexity. International Journal of Man-Machine Studies, 22, 365–394.CrossRefGoogle Scholar
  25. Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. London, UK: Taylor & Francis.Google Scholar
  26. Klein, G., Calderwood, R., & MacGregor, D. (1989). Critical decision method for eliciting knowledge. IEEE Transactions on Systems, Man, and Cybernetics, 19, 462–472.CrossRefGoogle Scholar
  27. Monk, A. F. (1998). Lightweight techniques to encourage innovative user interface design. In L. Wood (Ed.), User interface design: Bridging the gap between user requirements and design (pp. 109–129). Boca Raton, FL: CRC Press.Google Scholar
  28. Nichols, S., & Ritter, F. E. (1995). A theoretically motivated tool for automatically generating command aliases. In Proceedings of the CHI‘95 Conference on Human Factors in Computer Systems (pp. 393–400). New York, NY: ACM.Google Scholar
  29. Nielsen, J., & Phillips, V. L. (1993). Estimating the relative usability of two interfaces: Heuristic, formal, and empirical methods compared. In Proceedings of InterCHI ‘93 (pp. 214–221). New York, NY: ACM.Google Scholar
  30. Paik, J., Kim, J. W., Ritter, F. E., Morgan, J. H., Haynes, S. R., & Cohen, M. A. (2010). Building large learning models with Herbal. In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM: 2010- Tenth International Conference on Cognitive Modeling (pp. 187–191).Google Scholar
  31. Pettitt, M., Burnett, G., & Stevens, A. (2007). An extended keystroke level model (KLM) for predicting the visual demand of in-vehicle information systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1515–1524). ACM.Google Scholar
  32. Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when, and what learning happens in a diagrammatic reasoning task. Cognitive Science, 32, 862–892.CrossRefGoogle Scholar
  33. Ritter, F. E., Freed, A. R., & Haskett, O. L. (2002). Discovering user information needs: The case of university department websites (Tech. Report No. 2002-3): Applied Cognitive Science Lab, School of Information Sciences and Technology, Penn State.
  34. Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (Eds.). (2000). Cognitive task analysis. Mahwah, NJ: Erlbaum.Google Scholar
  35. Seamster, T. L., Redding, R. E., & Kaempf, G. L. (1997). Applied cognitive task analysis in aviation. Aldershot, UK: Avebury Aviation.Google Scholar
  36. Shadbolt, N. R. (2005). Eliciting expertise. In J. R. Wilson & E. Corlett (Eds.), Evaluation of human work (3rd Edition, pp. 185–218). London: Taylor and Francis.Google Scholar
  37. Shadbolt, N. R., & Burton, A. M. (1995). Knowledge elicitation: A systematic approach. In J. R. Wilson & E. N. Corlett (Eds.), Evaluation of human work: A practical ergonomics methodology (pp. 406–440). London: Taylor and Francis.Google Scholar
  38. St. Amant, R., Freed, A. R., & Ritter, F. E. (2005). Specifying ACT-R models of user interaction with a GOMS language. Cognitive Systems Research, 6(1), 71–88.Google Scholar
  39. St. Amant, R., Horton, T. E., & Ritter, F. E. (2004). Model-based evaluation of cell phone menu interaction. In Proceedings of the CHI‘04 Conference on Human Factors in Computer Systems (pp. 343–350). New York, NY: ACM.Google Scholar
  40. St. Amant, R., Horton, T. E., & Ritter, F. E. (2007). Model-based evaluation of expert cell phone menu interaction. ACM Transactions on Computer-Human Interaction, 14(1), 24.Google Scholar
  41. Vicente, K. (1999). Cognitive work analysis. Mahwah, NJ: Erlbaum.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.College of ISTThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK
  3. 3.EBay Research LabsSan JoseUSA

Personalised recommendations